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Abstract: For a given Lorentz mapping, we deduce the corresponding 2 x 2 unimodular complex matrix, and the transformation of 

the Dirac spinor. 
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INTRODUCTION 
The arbitrary complex quantities α, β, γ, δ verifying the condition αδ – βγ = 1, generate a Lorentz matrix 

     
   via the expressions [Rumer, J. 1936 - Cruz-Santiago, R. et al., 2021]: 
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Where cc means the complex conjugate of all the previous terms. 
 

The inverse problem is to obtain         if we know  , and the answer is [Cruz-Santiago, R. et al., 2021- 

López-Bonilla, J. et al., 2021]: 
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where       
   

 
    

   
 
  . 

 

On the other hand, the Dirac spinor obeys the transformation law [Leite-Lopes, J. 1977; Ohlsson, O. 2011]: 
 

 ̃                                                                                         (3) 

For a non-singular matrix   such that: 
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And we must determine a solution of (4) for a given Lorentz transformation. We have the expansion 

[Caicedo-Ortiz, H. E, J. et al., 2021]: 
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in terms of Dirac matrices in the standard representation [Leite-Lopes, J. 1977].                            
 

From (4) are immediate the expressions [Ohlsson, O. 2011; Macfarlane, A. J. 1966]: 
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That is, if we know S then with (6) we can determine the Lorentz matrix; (6) generates the relations: 
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which allow to obtain  L if we have the expansion (5). However, here we have the inverse problem, that is, to 

obtain                  verifying (7) for a given Lorentz matrix. Our answer is the following: 
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hence the expressions (1) are deduced if we apply (8) into (7). Besides, with (8) the matrix (5) acquires the 

structure: 
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Therefore, for a given Lorentz transformation first we employ (2) to determine        , then S is immediate 

via (9); this approach is an alternative to the process showed in [Caicedo-Ortiz, H. E. et al., 2021] and to the 

explicit general formula obtained by Macfarlane [Macfarlane, A. J. 1966]: 
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Unimodular Complex Matrix 

The expressions (2) allow obtain the complex matrix    (
  
  

) with the constraint           but we 

consider that it is important to study the complex quantity D in such relations. In fact, from (2): 
 

    
    

 
                          (

  
   

 

  
   

 

)                                      (12) 

 

and the application of (1) in (2) gives the properties: 
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that is,    ( ̅   ̅)     thus:          
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   On the other hand, from (2): 
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then with (14) and (15) we calculate the following positive real quantity: 
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in agreement with (11). Similarly: 
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hence for a given Lorentz mapping we determine G, H, D and finally the relations (2) imply the corresponding 

values for           whose application in (8) allows deduce the expressions: 
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and (5) gives the matrix  S  in terms of the gamma matrices in the Dirac-Pauli representation. The relations 

(18) are compatible with the results (10) and (11) obtained by Macfarlane [Macfarlane, A. J. 1966]. 
 

CONCLUSIONS 
For a given Lorentz transformation, our analysis 

gives its associated unimodular complex matrix 

and also the matrix that transforms the Dirac 4-

spinor. From (5) and (10) we see that S is a linear 

combination of eight gamma matrices:      and  
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