Sarcouncil Journal of Applied Sciences

ISSN(Online): 2945-3437

Volume- 01 | Issue- 01 | 2021

Short Communication

Received: 08-12-2021 | Accepted: 21-12-2021 | Published: 29-12-2021

Counting number of subgroups of order p of group $G = Zp \oplus Zp \oplus ... \oplus Zp$

Mr. Kishor Kantaram Gawade

Assistant Professor in Mathematics, KET's V G Vaze College, Mulund (E), Mumbai 400081, India

Abstract: This article belongs to subject Abstract Algebra. This article contains counting of some possible orders number of subgroup of group G, where G is external direct product of groups $G = Zp \oplus Zp \oplus ... \oplus Zp$ (n times), where p is prime number. As p is prime Z_p is cyclic group of order p.

Keywords: External direct product, cyclic group, Sylow theorem.

INTRODUCTION

Let, $G=Zp \oplus Zp \oplus ... \oplus Zp$ be a group of order p^n .

Now, possible orders of subgroups of group G are, 1, p, p^2 , p^3 , ..., p^{n-1} , p^n .

Group G has exactly one subgroup of order 1 and exactly one subgroup of order p^n (trivial Subgroups).

Proposition: Number of subgroups of order p (p is prime) of G= Zp Zp ... Zp are

 $p^{n-1} + p^{n-2} + p^{n-3} + \dots + p + 1$.

Proof: As p is prime number. Therefore subgroup of order p is cyclic subgroup. $G=Zp\oplus Zp\oplus ...\oplus Zp$ has elements of order 1 and p only.

Total number of elements in $G = p^n$

Number of elements of order 1 in G = 1 (identity only)Number of elements of order p in $G = p^n - 1$

 $\therefore \text{ Number of cyclic subgroup of order p of } G=\frac{\text{number of elements of order p in G}}{\Phi(d)}$

 $\stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \text{ number of cyclic subgroup of order p of G} = \frac{p^n - 1}{\varphi(p)} \\ \stackrel{(p)}{\rightarrow} \frac{p^n - 1}$

CONCLUSION AND FURTHER RESEARCH

Sr. No.	Order of subgroups of G	Number of subgroups of G
1	1	1
2	р	$p^{n-1} + p^{n-2} + p^{n-3} + \dots + p + 1$
3	p ⁿ	1

By Sylow theorem, there exists a subgroup of order p^2 , p^3 , ..., p^{n-1} of G. So the people can search to find total number of subgroups of order p^2 in G and p^3 in G and so on.

REFERENCES

- 1) Dummit, D., and Foote, F. Abstract Algebra, Wiley, Vermont, 2004. (2016)
- Joseph A. Gallian, Contemporary Abstract Algebra, 8th Edition, Brooks/Cole, Cengage Learning, 2012.
- P.B. Bhattacharya, S. K. Jain, S.R. Nagpaul, Cambridge University Press, 1994.
- 4) Conrad, Keith. Consequences of Cauchy's Theorem, Lecture Notes: University of Connecticut, math.uconn.edu/

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 (CC BY-NC-ND 4.0) International License

Sarc. Jr. Appl. Sci. vol-1, issue-1 (2021) pp-15-16

kconrad/blurbs/grouptheory/cauchyapp.pdf.

(2016).

Source of support: Nil; Conflict of interest: Nil.

Cite this article as: Gawade, K.K. "Counting number of subgroups of order p of = $Zp \oplus Zp \oplus ... \oplus Zp$." Sarcouncil Journal of

Applied Sciences 1.1 (2021): pp 15-16