
Technology Perception 
  

ISSN(Online): 3082-4451 

 
 

1 
 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

*Corresponding Author: Jayakanth Pujuri 
DOI- https://doi.org/10.5281/zenodo.17162321 

Augie, M.A. et al. Volume- 1| Issue- 02| 2025 

Research Article  Received: 05-08-2025 | Accepted: 25-08-2025 | Published: 19-09-2025 
 

A Practical Guide to Building End-to-End Azure Machine Learning Training 

Pipelines with Python SDK v2 
 

Jayakanth Pujuri  

Senior Member, IEEE, ORCID iD: 0009-0006-3471-0977 
 

Abstract: This paper delivers a practical, step-by-step guide to constructing, automating, and managing machine learning training 

pipelines using the Azure Machine Learning (Azure ML) Python SDK v2. It systematically navigates the essential stages, 

commencing with Azure ML workspace connection and the programmatic setup of requisite compute infrastructure. The guide then 
details the creation of versioned foundational MLOps assets, including Data Assets for traceable data handling, custom Conda-based 

Environments for execution reproducibility, and modular Components for discrete pipeline tasks such as data preparation and model 

training. Emphasis is placed on integrating MLflow for comprehensive experiment tracking and model registration. The methodology 
culminates in the assembly and execution of an end-to-end training pipeline, exemplified by an NYC Taxi fare prediction model, 

illustrating the orchestration of these elements into a cohesive workflow. This tutorial aims to empower developers and MLOps 

practitioners with the skills to develop modular, scalable, and reproducible ML solutions in the Azure cloud environment. 

Keywords: Python, SDK v2, Machine Learning 

 

INTRODUCTION 
The Increasing Complexity and scale of machine 

learning endeavors demand rigorous, automated, 

and reproducible MLOps practices. A cornerstone 

of effective MLOps is the systematic automation 

of training pipelines, which significantly 

accelerates the path from model conception to 

reliable production deployment. Azure Machine 

Learning (Azure ML) is a comprehensive cloud 

platform for managing the complete ML lifecycle 

(Microsoft, 2024). Specifically, the Azure ML 

Python SDK v2 provides a sophisticated, code-first 

interface for granular programmatic control over 

all facets of ML experimentation and pipeline 

orchestration (Microsoft, 2024). This empowers 

practitioners with enhanced automation and a 

deeper understanding of operational mechanics. 
 

This paper delivers a practical guide for 

constructing and automating ML training pipelines 

using the Azure ML Python SDK v2. It addresses 

core MLOps principles: ensuring reproducibility 

through versioned assets and defined software 

environments; promoting automation of intricate 

workflows with modular, reusable components; 

and enabling robust management of ML artifacts, 

including MLflow integration for experiment 

tracking and model registration. The tutorial 

progresses from the programmatic setup of 

foundational infrastructure, including compute 

resources, to exploring core concepts like data 

asset management, custom component creation, 

and environment specification. By completing this 

guide, readers will have assembled an end-to-end 

training pipeline for a sample NYC Taxi fare 

prediction model, culminating in a versioned, 

MLflow-tracked model registered in Azure ML, 

and thereby gaining tangible skills in building 

automated, production-oriented ML solutions. 
 

This guide is principally designed for developers, 

and also for experienced data scientists, ML 

engineers, and MLOps specialists, who possess 

proficient Python programming skills and seek to 

build production-oriented solutions. Access to an 

Azure subscription is necessary; notably, the 

entirety of this tutorial can be executed utilizing 

the Azure free tier. However, practitioners are 

strongly advised to exercise diligent cost 

management, particularly concerning the 

provisioning and utilization of compute resources, 

to prevent inadvertent expenditures. 
 

PREREQUISITES AND 
ENVIRONMENT SETUP 
This tutorial is accompanied by a GitHub 

repository containing all Python scripts, 

component YAML files, and the necessary data for 

building the example pipeline (available at [Link 

to Repository Placeholder - e.g., 

https://github.com/yourusername/azureml_sdk_v2

_tutorial]). 
 

Before proceeding with the programmatic steps 

outlined in this paper, users must ensure their local 

development environment and Azure account are 

correctly configured. Key prerequisites include an 

active Azure subscription, an Azure Machine 

Learning (Azure ML) Workspace, the config.json 

file downloaded from this workspace, Azure 

Command-Line Interface (CLI) authentication, and 

a Python virtual environment into which the azure-



  

 
 

2 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

ai-ml (Microsoft, 2024) and azure-identity 

packages are installed. 
 

For comprehensive, step-by-step instructions to 

fulfill these requirements, please consult the 

README.md file within the aforementioned 

GitHub repository. The subsequent sections 

assume these foundational setup tasks have been 

completed. 
 

Establishing a Connection to the Azure ML 

Workspace 
 

Programmatic interaction with Azure ML services 

begins with establishing an authenticated 

connection to the workspace. Throughout this 

tutorial, this connection is managed using a 

dedicated utility script, 

ml_client_connection_utils.py, located in the 

pipeline_scripts directory of the companion 

repository. This script encapsulates the logic for 

instantiating the azure.ai.ml.MLClient, which 

serves as the primary programmatic interface to 

the Azure ML workspace. 
 

The core function within this utility, 

get_ml_client(), is designed for robustness and 

ease of use. It primarily attempts to establish a 

connection by loading workspace details from a 

config.json file. The script intelligently searches 

several common project directory locations for this 

file, such as the project root or a dedicated 

.azureml subfolder. This method, internally using 

MLClient.from_config(credential=DefaultAzureCr

edential(), path=...), uses the 

DefaultAzureCredential from the azure-identity 

library, which supports multiple authentication 

flows (e.g., Azure CLI login, environment 

variables, managed identity) to suit various 

execution contexts. This config.json-based 

approach is the recommended pathway for this 

tutorial. 
 

As a fallback, if config.json is not found or if 

explicitly bypassed, the get_ml_client() function 

can utilize manually provided subscription ID, 

resource group name, and workspace name 

parameters for connection. 
 

In the operational scripts that follow, such as 

01_setup_azure_environment.py, the MLClient is 

typically initialized by importing and calling this 

utility function: 

 

# pipeline_scripts/01_setup_azure_environment.py (Example Usage) 

from ml_client_connection_utils import get_ml_client 

 

# Attempt to connect to the Azure ML workspace 

ml_client = get_ml_client() 

 

if not ml_client: 

    # Further error handling or script exit would occur here 

    print("MLClient could not be initialized. Exiting script.") 

    exit(1) 

 

print(f"Successfully connected to Azure ML workspace: {ml_client.workspace_name}") 

# Azure ML operations using ml_client can now proceed 

Fig. 1. Excerpt of 01_setup_azure_environment.py. 
 

The complete, well-commented source code for 

the ml_client_connection_utils.py utility, detailing 

its search logic and error handling, is available in 

the project's GitHub repository for review. This 

utility ensures a consistent and simplified 

connection mechanism across all subsequent 

tutorial scripts. 
 

Provisioning Essential Compute Resources 

With the MLClient established, the next step is to 

ensure the necessary Azure ML compute 

infrastructure is available for executing pipeline 

jobs. This tutorial primarily utilizes a managed 

Azure ML Compute Cluster for running training 

and data processing tasks. Optionally, an Azure 

ML Compute Instance can be configured for 

interactive development, though it is not essential 

for the main pipeline execution. 
 

The script 

pipeline_scripts/01_setup_azure_environment.py 

automates the provisioning of the required 

compute cluster, named cc-nyc-taxi-cpu. This 

script performs the following actions: 

 Establishes a connection to the Azure ML 

workspace using the get_ml_client() utility 

discussed previously. 



  

 
 

3 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 Checks for the existence of the cc-nyc-taxi-cpu 

compute cluster. 

 If the cluster exists, it verifies if its 

configuration (VM size, min/max instances) 

matches the desired settings for the tutorial. If 

not, it attempts to update the cluster. 

 If the cluster does not exist, it creates a new 

AmlCompute cluster with a specified VM size 

(e.g., Standard_DS11_v2), configured to scale 

down to zero instances when idle to optimize 

costs, and a defined maximum number of 

instances. 
 

Key considerations when provisioning the 

compute cluster include selecting an appropriate 

VM size available in the user's Azure region and 

ensuring sufficient vCPU quota for the chosen VM 

family. The script 01_setup_azure_environment.py 

encapsulates the SDK v2 logic for this: 

 

# pipeline_scripts/01_setup_azure_environment.py (Snippet for AmlCompute) 

from azure.ai.ml.entities import AmlCompute 

 

cluster_name = "cc-nyc-taxi-cpu" 

desired_vm_size = "Standard_DS11_v2"  

# ... (other parameters like min/max instances) 

 

try: 

    compute_cluster = ml_client.compute.get(cluster_name) 

    print(f"Found existing compute cluster '{cluster_name}'.") 

    # ... (logic for checking and updating if necessary) ... 

except ResourceNotFoundError: 

    print(f"Compute cluster '{cluster_name}' not found. Creating new...") 

    compute_cluster_config = AmlCompute( 

        name=cluster_name, 

        type="amlcompute", 

        size=desired_vm_size, 

        min_instances=0, # Essential for cost-saving 

        max_instances=1, # Tutorial default 

        idle_time_before_scale_down=120, 

        # ... 

    ) 

    ml_client.compute.begin_create_or_update(compute_cluster_config).result() 

    print(f"Compute cluster '{cluster_name}' created.") 

# ... (error handling) ... 

Fig. 2. Excerpt of 01_setup_azure_environment.py. 
 

The script also includes commented-out sections 

for creating a ComputeInstance (ci-nyc-taxi-dev), 

which users can enable if an interactive 

development environment within Azure ML 

Studio is desired. The full 

01_setup_azure_environment.py script is available 

in the project repository. 
 

With the workspace connection active and the 

compute cluster provisioned, the environment is 

now prepared for defining and managing the core 

assets of the machine learning pipeline, which are 

detailed in Section III. 
 

FOUNDATIONAL ELEMENTS OF 
AZURE ML PIPELINES 
With the Azure ML workspace connection 

established and essential compute infrastructure 

provisioned as detailed in Section II, the focus now 

shifts to creating the core, versioned assets that 

form the building blocks of an automated machine 

learning pipeline. 
 

This section details the programmatic creation of 

data assets for traceable data handling, custom 

environments for reproducible execution, and 

modular components for individual pipeline steps, 

culminating with the integration of MLflow for 

robust experiment tracking and model governance. 

These elements are created using specific Python 

scripts that use the Azure ML SDK v2. 
 

Data Management: Assets and Versioning 

Effective MLOps practices mandate robust data 

management, ensuring that data used for training 

and evaluation is traceable, versioned, and easily 



  

 
 

4 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

accessible within the ML workflow. Azure ML 

Data Assets fulfill this role by providing versioned 

pointers to data. This data can be uploaded from a 

local source to an Azure ML Datastore—a secure 

connection to Azure storage services like Azure 

Blob Storage, which typically serves as the default 

datastore for an Azure ML workspace—or it can 

reference data already in the cloud. 
 

For our NYC Taxi fare prediction example, this 

tutorial first creates a URI_FILE Data Asset by 

uploading the raw CSV data, and subsequently, an 

MLTable Data Asset is created to provide a 

structured, typed interface to this data for pipeline 

consumption. 

The initial step involves uploading the local 

yellowTaxiData.csv file (located in the 

raw_data_to_upload directory of the companion 

repository) to the workspace's default datastore 

and registering it as a versioned URI_FILE asset. 

This is accomplished by the 

pipeline_scripts/02_upload_and_register_csv_asse

t.py script. The script defines a Data object, 

specifying its name, the desired version (e.g., "1" 

for the initial run), a description, the local path to 

the data file, and the type as 

AssetTypes.URI_FILE. The Azure ML SDK then 

handles the upload and registration when 

ml_client.data.create_or_update() is called. 

 

# pipeline_scripts/02_upload_and_register_csv_asset.py (Key Snippet) 

from azure.ai.ml.entities import Data 

from azure.ai.ml.constants import AssetTypes 

 

# ... (ml_client and local_data_path are defined) ... 

 

data_asset_name = "nyc-taxi-raw-yellow-csv" 

data_asset_version = "1" 

 

my_raw_data_asset = Data( 

    name=data_asset_name, 

    version=data_asset_version, 

    description=f"Raw NYC Yellow Taxi data ({local_csv_file_name}) uploaded...", 

    path=local_data_path, # SDK handles upload from this local path 

    type=AssetTypes.URI_FILE 

) 

registered_data_asset = ml_client.data.create_or_update(my_raw_data_asset) 

# The registered_data_asset.path will now point to the cloud URI 

Fig. 3. Excerpt of 02_upload_and_register_csv_asset.py. 
 

This process results in the nyc-taxi-raw-yellow-

csv:1 data asset being available in the workspace, 

with its path attribute reflecting its new location in 

Azure cloud storage. 
 

 
Fig. 4. The nyc-taxi-raw-yellow-csv, uploaded and registered to Azure’s default data store. 



  

 
 

5 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 

Once the raw CSV data is in the cloud and 

registered as a URI_FILE asset, an MLTable asset 

is created to provide a structured, versioned 

pointer to this tabular data. The MLTable itself, in 

this tutorial, does not perform transformations; 

instead, it acts as a schema-aware reference, with 

CSV parsing details deferred to the data 

preparation component for explicit control. 

The script 

pipeline_scripts/03_create_mltable_asset.py 

orchestrates this. It first retrieves the cloud URI of 

the previously created nyc-taxi-raw-yellow-csv:1 

asset. Then, it dynamically generates the content 

for an MLTable definition file. This definition 

simply contains a paths directive pointing to the 

cloud URI of the CSV file. 
 

# pipeline_scripts/03_create_mltable_asset.py (Key Snippet for MLTable definition) 

# ... (fully_qualified_csv_uri obtained from the URI_FILE asset) ... 

 

mltable_definition_content = { 

    "type": "mltable", 

    "paths": [{"file": fully_qualified_csv_uri}]  

} 

# This content is written to a local temporary file named 'MLTable' 

# in a temporary directory (e.g., '../temp_mltable_def_csv_pointer/MLTable'). 

Fig. 5. Excerpt of 03_create_mltable_asset.py. 
 

This local directory containing the MLTable file is then used as the path when creating a new Data asset of 

type AssetTypes.MLTABLE. 
 

# pipeline_scripts/03_create_mltable_asset.py (Key Snippet for MLTable registration) 

# ... (local_mltable_def_dir is the path to the directory holding the 'MLTable' file) ... 

 

mltable_asset_name = "nyc-taxi-mltable-yellow-csv" 

mltable_asset_version = "1" 

 

my_mltable_asset = Data( 

    name=mltable_asset_name, 

    version=mltable_asset_version, 

    description=f"MLTable (simple pointer) referencing ...", 

    path=local_mltable_def_dir, # Path to the folder containing the MLTable definition file 

    type=AssetTypes.MLTABLE 

) 

 

registered_mltable_asset = ml_client.data.create_or_update(my_mltable_asset) 

Fig. 6. Excerpt of 03_create_mltable_asset.py. 
 

Upon successful execution, the nyc-taxi-mltable-yellow-csv:1 asset is registered. 
 



  

 
 

6 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 
Fig. 7. The nyc-taxi-mltable-yellow-csv, uploaded and registered to Azure’s default data store. 

 

This MLTable asset will serve as the typed input 

for the data preparation step in the main pipeline, 

ensuring that the pipeline consumes a specific, 

versioned representation of the tabular data. 
 

Custom Components for Modularity and 

Reusability 

Azure ML Components are self-contained, 

reusable units of code that perform specific tasks 

within a pipeline, such as data preparation, model 

training, or evaluation. They encapsulate the 

execution logic, define necessary inputs and 

outputs, and specify the runtime environment. This 

component-based architecture is fundamental to 

building modular, scalable, and maintainable ML 

pipelines, aligning with MLOps best practices by 

promoting the separation of concerns and 

facilitating the independent development and 

testing of pipeline steps. 

Defining Reproducible Runtime Environments: 

To ensure that component code executes 

consistently and reliably across different 

development and execution contexts, Azure ML 

utilizes Environments. An Environment defines 

the software runtime, including the operating 

system (via a base Docker image), Python 

packages, system libraries, and environment 

variables. 
 

For this tutorial, a custom Conda environment is 

defined in environments/nyc_taxi_env.yml to 

specify all dependencies required by the pipeline 

components, such as scikit-learn, pandas, mlflow, 

and azureml-mlflow. 
 

The environments/nyc_taxi_env.yml file lists 

Python and package versions to ensure 

reproducibility: 

 

# ~/azureml_sdk_v2_tutorial/environments/nyc_taxi_env.yml (Key Snippet) 

name: nyc-taxi-tutorial-conda-env  

channels: 

  - conda-forge 

  - defaults 

dependencies: 

  - python=3.8.13  

  - pip=22.3.1  

  - scikit-learn=1.0.2  

  - pandas=1.5.3  

  - numpy=1.23.5  

  - mlflow==2.3.0 

  - pip: 

    - azureml-mlflow==1.50.0  

    - mltable==1.5.0  

Fig. 8. Excerpt of nyc_taxi_env.yml. 



  

 
 

7 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 

It is important to note that the name field within 

the Conda YAML (nyc-taxi-tutorial-conda-env) is 

for Conda's internal use and is distinct from the 

name given to the Azure ML Environment asset 

when it is registered. 
 

This Conda definition is then registered as a 

versioned Azure ML Environment asset using the 

script 

pipeline_scripts/04_create_environment_asset.py. 

This script instantiates an Environment object, 

providing a name for the asset (e.g., nyc-taxi-

component-env), a version string (e.g., "1"), a 

description, the path to the local Conda YAML 

file, and a reference to a base Docker image (e.g., 

mcr.microsoft.com/azureml/openmpi4.1.0-

ubuntu20.04:latest) upon which Azure ML will 

build the specified Conda environment. 

 

# pipeline_scripts/04_create_environment_asset.py (Key Snippet) 

from azure.ai.ml.entities import Environment 

 

# ... (ml_client and conda_env_file_path_local are defined) ... 

 

environment_name = "nyc-taxi-component-env" 

environment_version = "1" 

 

custom_environment = Environment( 

    name=environment_name, 

    version=environment_version, 

    description="Custom Conda environment for NYC Taxi pipeline components...", 

    conda_file=conda_env_file_path_local, 

    image="[mcr.microsoft.com/azureml/openmpi4.1.0-

ubuntu20.04:latest](https://mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:latest)"  

) 

 

registered_environment = ml_client.environments.create_or_update(custom_environment) 

# The actual Docker image build occurs when this environment is first used by a job. 

Fig. 9. Excerpt of 04_create_environment_asset.py. 
 

Registering the environment (e.g., as nyc-taxi-component-env:1) makes it available within the Azure ML 

workspace. 
 

 
Fig. 10. The nyc-taxi-component-env, registered as a Conda environment in Azure Studio. 

 



  

 
 

8 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 
 

Subsequent pipeline components will reference 

this registered environment to ensure that their 

code executes within this exact, reproducible 

software configuration. This practice mitigates 

issues related to dependency conflicts or "works 

on my machine" problems, which are critical 

concerns in production ML systems. 
 

Creating a Custom Component: With a 

reproducible environment defined and registered, 

the next step is to create custom components that 

encapsulate specific stages of the ML workflow. 

 

For this tutorial, a data preparation component is 

developed first. This involves two main parts: the 

Python script containing the data processing logic, 

and a YAML component definition file that 

specifies the component's interface, inputs, 

outputs, the script to execute, and the environment 

it runs in. 
 

The core logic for data preparation is implemented 

in the Python script 

components/prep_data/src/prep_data.py. This 

script is designed to be executed from the 

command line and accepts arguments for the raw 

data input path, the output path for prepared data, a 

test split ratio, and a random state for 

reproducibility. Internally, it performs several 

operations: 

 Loads the raw CSV data (passed as a 

URI_FILE by the pipeline) into a pandas 

DataFrame (The Pandas Development Team, 

2020). 

 Applies basic filtering (e.g., removing records 

with zero passenger count or fare amount). 

 Converts and validates datetime columns, 

handling potential NaT values. 

 Engineers new temporal features such as hour 

of day, day of week, and month from the 

pickup datetime. 

 Selects relevant features for model training 

and the target variable (fareAmount). 

 Handles potential infinite values and missing 

values in the target variable. 

 Ensures all feature columns are numeric, 

coercing types and imputing remaining NaNs 

in feature columns using the median. 

 Splits the processed data into training and 

testing sets using 

sklearn.model_selection.train_test_split. (F. 

Pedregosa et al., 2011) 

 Saves the resulting training and testing 

DataFrames as Parquet files 

(train_data.parquet, test_data.parquet) into 

designated subfolders within the component's 

output path. 
 

The interface for this data preparation component 

is defined in 

components/prep_data/prep_data_component.yml. 

This YAML file specifies metadata such as the 

component's name (prep_nyc_taxi_data_custom), 

version ("1"), display_name, and description. 

Crucially, it defines the expected inputs (e.g., 

raw_data_input_path of type uri_file, 

test_split_ratio of type number) and outputs (e.g., 

prepared_data_path of type uri_folder). The code 

key points to the src/ directory containing 

prep_data.py, and the environment key references 

the previously registered nyc-taxi-component-

env:1. The command section details how to 

execute prep_data.py, mapping the component's 

inputs and outputs to the script's command-line 

arguments using Azure ML's expression syntax. 
 

A key snippet from prep_data_component.yml 

illustrates the input, output, and command 

definition: 
 

# components/prep_data/prep_data_component.yml (Key Snippet) 

$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json 

name: prep_nyc_taxi_data_custom 

version: 1 

type: command 

inputs: 

  raw_data_input_path:  

    type: uri_file 

  test_split_ratio: 

    type: number 

    default: 0.2 

# ... (other inputs) 

outputs: 

  prepared_data_path: 



  

 
 

9 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

    type: uri_folder 

code: ./src/ # Points to the directory containing prep_data.py 

command: >- 

  python prep_data.py  

  --raw_data_input_path ${{inputs.raw_data_input_path}} 

  --prepared_data_path ${{outputs.prepared_data_path}} 

  --test_split_ratio ${{inputs.test_split_ratio}} 

  # ... (other arguments)   

environment: azureml:nyc-taxi-component-env:1 

Fig. 11. Excerpt of prep_data_component.yml. 
 

To make this component available for use in 

pipelines, it is registered in the Azure ML 

workspace using the script 

pipeline_scripts/05_register_prep_component.py. 

This script uses the Azure ML SDK's 

load_component() function to parse the YAML 

definition file. The loaded component object is 

then passed to 

ml_client.components.create_or_update() for 

registration. 
 

# pipeline_scripts/05_register_prep_component.py (Key Snippet) 

from azure.ai.ml import load_component 

 

# ... (ml_client and component_yaml_path_local are defined) ... 

 

# Load component definition from YAML 

data_prep_component = load_component(source=component_yaml_path_local) 

 

# Register the component 

registered_component = ml_client.components.create_or_update(data_prep_component) 

 

print(f"Successfully registered component: {registered_component.name} version 

{registered_component.version}") 

Fig. 12. Excerpt of 05_register_prep_component.py. 
 

Once registered (e.g., as 

prep_nyc_taxi_data_custom:1), this data 

preparation component can be readily incorporated 

as a versioned, reusable step in various machine 

learning pipelines. 

 

 
Fig. 13. The prep_nyc_taxi_data_custom Component preview in Azure Studio. 



  

 
 

10 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 

This modular approach simplifies pipeline 

construction and maintenance, as the component's 

logic can be updated and versioned independently. 
 

Experiment Tracking and Model Governance with 

MLflow 

Comprehensive experiment tracking and model 

management are critical for iterative development 

and production-grade MLOps. Azure Machine 

Learning seamlessly integrates with MLflow, an 

open-source platform for managing the end-to-end 

machine learning lifecycle (Zaharia, M. et al., 

2018). This integration allows for automatic 

tracking of runs, parameters, metrics, artifacts, and 

models within the Azure ML workspace, providing 

a centralized location for governance and 

reproducibility. 
 

The model training component for the NYC Taxi 

fare prediction task, defined by 

components/train_model/train_model_component.

yml and its corresponding script 

components/train_model/src/train_model.py, uses 

this MLflow integration extensively. The 

train_model.py script is responsible for: 
 

 Loading the prepared training data (output 

from the data preparation component). 

 Training a regression model (e.g., 

sklearn.linear_model.Ridge in this tutorial). 

 Within an mlflow.start_run() context, logging 

key aspects of the training process: 
 

Parameters: Hyperparameters like alpha and 

other configuration details are logged using 

mlflow.log_param(). 
 

Metrics: Evaluation metrics calculated on the 

training data, such as Root Mean Squared Error 

(RMSE) and R-squared (R2) score, are logged 

using mlflow.log_metric(). 
 

Model Artifacts: The trained scikit-learn model is 

logged using mlflow.sklearn.log_model(). This 

function also facilitates including a model 

signature (inferred from sample input and output 

data using 

mlflow.models.signature.infer_signature) and an 

input_example. Crucially, by specifying the 

registered_model_name argument within 

mlflow.sklearn.log_model(), the model is not only 

saved as an artifact of the MLflow run but is also 

automatically registered or versioned within the 

Azure ML Model Registry. 
 

Other Artifacts: Additional files, such as a text 

file containing the names of features used for 

training (feature_names.txt), can be logged using 

mlflow.log_artifact(). 
 

Key snippets from 

components/train_model/src/train_model.py 

illustrate these MLflow logging operations: 
 

# components/train_model/src/train_model.py (Key MLflow Snippets) 

import mlflow 

import mlflow.sklearn 
from mlflow.models.signature import infer_signature 

 

# ... (inside main function and after loading data as X_train, y_train) ... 

 

with mlflow.start_run() as run: 

    mlflow.log_param("alpha_hyperparameter", args.alpha) 

    # ... (other parameters) ... 

 

    model = Ridge(alpha=args.alpha, random_state=args.random_state) 

    model.fit(X_train, y_train) 

 

    predictions_train = model.predict(X_train) 

    rmse_train = mean_squared_error(y_train, predictions_train, squared=False) 

    r2_train = r2_score(y_train, predictions_train) 

    mlflow.log_metric("training_rmse", rmse_train) 

    mlflow.log_metric("training_r2_score", r2_train) 

 

    input_example_df = X_train.head() 

    example_predictions = model.predict(input_example_df) 

    signature = infer_signature(input_example_df, example_predictions) 



  

 
 

11 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 

    mlflow.sklearn.log_model( 

        sk_model=model, 

        artifact_path="nyc_taxi_fare_model_files",  

        registered_model_name=args.registered_model_name, 

        signature=signature, 

        input_example=input_example_df 

    ) 

     

    # Example of logging an additional artifact 

    # with open("feature_names.txt", 'w') as f: # features are written to this file 

    #    # ... write feature names ... 

    # mlflow.log_artifact("feature_names.txt", artifact_path="training_run_details") 

Fig. 14. Excerpt of train_model.py. 
 

The 

components/train_model/train_model_component.

yml file defines the interface for this training 

component. It specifies inputs such as the path to 

prepared data (prepared_data_input_path), 

hyperparameters like alpha, and the 

registered_model_name. It also declares an output 

(model_output_mlflow of type uri_folder), which 

can be used for auxiliary files like a training 

summary, distinct from the MLflow-managed 

model artifacts. Similar to the data preparation 

component, it references the nyc-taxi-component-

env:1 environment and defines the command to 

execute train_model.py with the necessary 

argument bindings. 
 

Finally, the script 

pipeline_scripts/06_register_train_component.py 

registers this training component. It follows the 

same pattern as the data preparation component 

registration: it loads the component definition from 

train_model_component.yml using 

load_component() and then uses 

ml_client.components.create_or_update() to 

register it in the Azure ML workspace (e.g., as 

train_nyc_taxi_model_custom:1). 

 

# pipeline_scripts/06_register_train_component.py (Key Snippet) 

from azure.ai.ml import load_component 

 

# ... (ml_client and component_yaml_path_local for train_model_component.yml are defined) ... 

 

model_train_component = load_component(source=component_yaml_path_local) 

registered_component = ml_client.components.create_or_update(model_train_component) 

 

print(f"Successfully registered component: {registered_component.name} version 

{registered_component.version}") 

Fig. 15. Excerpt of 06_register_train_component.py. 
 

By registering this training component, which 

internally handles all MLflow logging and model 

registration, a modular and traceable approach to 

model training and governance is established. 
 

 



  

 
 

12 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 
Fig. 16. The train_nyc_taxi_model_custom Component in Azure Studio. 

 

The resulting MLflow runs and registered models 

in Azure ML provide a comprehensive audit trail 

and facilitate model deployment and lifecycle 

management, which will be demonstrated when 

the full pipeline is assembled in Section IV. 
 

ASSEMBLING AND EXECUTING THE 
NYC TAXI FARE PREDICTION 
PIPELINE 
This section demonstrates the culmination of the 

concepts and assets developed in Section III, 

detailing the construction, execution, and 

monitoring of an automated training pipeline for 

the NYC Taxi fare prediction example. 
 

The primary script guiding this process is 

pipeline_scripts/07_run_nyc_taxi_pipeline.py. 

This walkthrough will show how the versioned 

Data Assets, custom Environment, and modular 

Components are orchestrated into a cohesive and 

reproducible MLOps workflow using the Azure 

ML Python SDK v2. 
 

Pipeline Definition: Orchestrating Components 

The core of the automated workflow is an Azure 

ML pipeline defined programmatically using a 

Python function and the @pipeline decorator from 

the azure.ai.ml.dsl module. This approach provides 

a clear and maintainable way to define the 

sequence of operations, data dependencies, and 

parameterization of the entire training process. 
 

The pipeline_scripts/07_run_nyc_taxi_pipeline.py 

script begins by establishing a connection to the 

Azure ML workspace and verifying the essential 

cc-nyc-taxi-cpu compute target. It then proceeds to 

load the specific, versioned components that were 

registered in Section III: 
 

Loading Registered Components: The 

prep_nyc_taxi_data_custom:1 (data preparation) 

and train_nyc_taxi_model_custom:1 (model 

training) components are retrieved from the 

workspace using ml_client.components.get(). This 

ensures that the pipeline consistently utilizes 

version "1" of these building blocks, which is the 

version created by the tutorial's preceding scripts. 
 



  

 
 

13 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Snippet: Loading components) 

prep_component_name = "prep_nyc_taxi_data_custom" 

prep_component_version = "1" 

train_component_name = "train_nyc_taxi_model_custom" 

train_component_version = "1" 

prep_data_component_func = ml_client.components.get(name=prep_component_name, 

version=prep_component_version) 

train_model_component_func = ml_client.components.get(name=train_component_name, 

version=train_component_version) 

Fig. 17. Excerpt of 07_run_nyc_taxi_pipeline.py. 
 

Defining the Pipeline Function: A Python 

function, nyc_taxi_pipeline_tutorial_run in this 

case, is decorated with @pipeline. This decorator 

registers the function as a pipeline definition with 

Azure ML, allowing it to be instantiated and run as 

a job. The function defines: 
 

Pipeline-Level Inputs: These are parameters that 

can be passed to the pipeline at runtime. For this 

example, pipeline_input_data (of type Input from 

azure.ai.ml) is defined to accept the raw input data, 

pipeline_alpha_for_training allows specifying the 

Ridge regression hyperparameter, and 

pipeline_model_registration_name dictates the 

name under which the trained model will be 

registered. 
 

Component Instantiation as Jobs: Inside the 

pipeline function, jobs are created by calling the 

loaded component functions (e.g., 

prep_data_component_func(...)). Inputs are passed 

to these component jobs, including pipeline-level 

inputs or outputs from preceding steps. For 

instance, parameters like test_split_ratio for the 

data preparation job are explicitly set within the 

pipeline, overriding any defaults from the 

component's YAML if needed. 
 

Data Flow and Dependency Management: The 

critical connection between components is 

established by directing the output of one 

component job to the input of a subsequent one. 

The prepared_data_path output from the 

prep_data_job is passed as the 

prepared_data_input_path to the train_model_job. 

Azure ML automatically manages the data transfer 

or mounting based on these defined dependencies. 
 

Pipeline Outputs: The pipeline can also declare 

its own outputs, often sourced from the outputs of 

its constituent component jobs, such as the path to 

the prepared data and the training summary 

location. 
 

A conceptual representation of the pipeline 

definition within 07_run_nyc_taxi_pipeline.py: 

 

# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Conceptual Pipeline Definition) 

from azure.ai.ml.dsl import pipeline 

from azure.ai.ml import Input 

 

@pipeline( 

    name="nyc_taxi_training_pipeline_v1_final",  

    display_name="NYC Taxi Fare Prediction Training Pipeline (v1 - Tutorial Run)" 

    # ... other pipeline metadata 

) 

def nyc_taxi_pipeline_tutorial_run(  

    pipeline_input_data: Input,  

    pipeline_alpha_for_training: float = 1.0, 

    pipeline_model_registration_name: str = "nyc-taxi-fare-predictor" 

): 

    prep_data_job = prep_data_component_func( # Loaded component 

        raw_data_input_path=pipeline_input_data, 

        test_split_ratio=0.2  

        # ... other inputs 

    ) 

 

train_model_job = train_model_component_func( # Loaded component 



  

 
 

14 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

        prepared_data_input_path=prep_data_job.outputs.prepared_data_path, # Wiring output to input 

        alpha=pipeline_alpha_for_training, 

        registered_model_name=pipeline_model_registration_name 

        # ... other inputs 

    ) 

    return { # Defining pipeline outputs 

        "pipeline_prepared_data_output": prep_data_job.outputs.prepared_data_path, 

        "pipeline_model_training_summary_output": train_model_job.outputs.model_output_mlflow 

    } 

Fig. 18. Excerpt of 07_run_nyc_taxi_pipeline.py. 
 

Pipeline Instantiation and Execution 

Once the pipeline structure is defined via the 

decorated Python function, it must be instantiated 

as a PipelineJob object and configured for 

execution: 
 

Instantiating the Pipeline: The pipeline function 

(nyc_taxi_pipeline_tutorial_run) is called. For this 

tutorial's initial run, it is invoked by passing an 

Input object that references the nyc-taxi-raw-

yellow-csv:1 data asset (created in Section III.A) 

as the pipeline_input_data. Specific values for 

other pipeline parameters like 

pipeline_alpha_for_training and 

pipeline_model_registration_name are also 

provided at this stage. 

 

# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Snippet: Instantiating the pipeline) 

input_data_asset_name = "nyc-taxi-raw-yellow-csv"  

input_data_asset_version = "1" 

# ... (code to get input_data_for_pipeline object) ... 

pipeline_job = nyc_taxi_pipeline_tutorial_run( 

    pipeline_input_data=Input(type="uri_file", 

path=f"azureml:{input_data_for_pipeline.name}:{input_data_for_pipeline.version}"), 

    pipeline_alpha_for_training=0.5, 

    pipeline_model_registration_name="nyc-taxi-fare-predictor-tutorial-v1" 

) 

Fig. 19. Excerpt of 07_run_nyc_taxi_pipeline.py. 
 

Setting Default Compute Target: A crucial step 

for ensuring the pipeline jobs run on the intended 

infrastructure is to assign a default compute target 

to the pipeline job instance. This is done 

programmatically after the pipeline job is 

instantiated by setting its settings.default_compute 

attribute. For this tutorial, the cc-nyc-taxi-cpu 

compute cluster (provisioned in Section II.B) is set 

as the default. 

 

# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Snippet: Setting default compute) 

pipeline_job.settings.default_compute = "cc-nyc-taxi-cpu" 

 

Submitting the Pipeline Job: The configured 

pipeline_job is then submitted to Azure ML using 

ml_client.jobs.create_or_update(). An 

experiment_name (e.g., 

nyc_taxi_tutorial_pipeline_v1_runs) is provided to 

group and organize related pipeline runs within the 

Azure ML Studio, facilitating easier tracking and 

comparison. 
 



  

 
 

15 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Snippet: Submitting the job) 

returned_pipeline_job = ml_client.jobs.create_or_update( 

    pipeline_job, 

    experiment_name="nyc_taxi_tutorial_pipeline_v1_runs" 

) 

print(f"Pipeline job submitted successfully.") 

print(f"  Job Name: {returned_pipeline_job.name}") 

print(f"  View in Azure ML Studio: {returned_pipeline_job.studio_url}") 

 

Monitoring and Reviewing Pipeline Results 

Upon successful submission, the 

07_run_nyc_taxi_pipeline.py script outputs a URL 

to the pipeline run in Azure ML Studio. This web 

interface is central to monitoring and 

understanding the pipeline's execution: 
 

Visualize the Pipeline Graph: The Studio 

presents a directed acyclic graph (DAG) of the 

pipeline, visually representing the components, 

their execution order, and data dependencies. 
 

Monitor Run Status: Users can track the real-

time status of the overall pipeline and each 

individual component job (e.g., Preparing, 

Running, Completed, Failed). 
 

Inspect Component Details: Each component job 

in the graph can be selected to view its specific 

inputs, outputs, parameters, and, importantly, its 

execution logs. These logs include standard output 

(std_log.txt), which contains messages printed by 

the component scripts (e.g., prep_data.py and 

train_model.py), crucial for debugging and 

verification. 
 

Review MLflow Tracking Data: For the model 

training component 

(train_nyc_taxi_model_custom:1), the "Metrics" 

tab will display metrics logged via MLflow (e.g., 

training_rmse, training_r2_score). The "Outputs + 

logs" tab will contain artifacts logged by MLflow, 

including the model files themselves (typically 

under a path like nyc_taxi_fare_model_files) and 

any additional artifacts like feature_names.txt. The 

model registered via MLflow will also be 

versioned and available in the workspace's central 

"Models" registry. 
 

Access Pipeline Outputs: If the pipeline 

definition included a return statement to declare 

pipeline-level outputs (as shown in the conceptual 

snippet), these outputs can be found and 

downloaded from the "Outputs + logs" tab of the 

parent pipeline run. 

 

 
Fig. 20. Completed NYC Taxi Fare pipeline in Azure Studio. 



  

 
 

16 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

 

Considerations for Iteration and Version 

Management 

The scripts and pipeline definition detailed in this 

tutorial are intentionally structured for a "clean 

run," consistently utilizing version "1" of all 

created Data Assets, the custom Environment, and 

both custom Components. This approach is 

designed to ensure predictability and 

reproducibility for readers undertaking the tutorial 

for the first time. 
 

However, real-world machine learning 

development is an inherently iterative process. 

Should a user modify the underlying logic or 

interface of a component (e.g., change feature 

engineering steps in prep_data.py, alter its YAML 

definition, or update the model architecture in 

train_model.py), it is a fundamental MLOps best 

practice to register this modified entity as a new 

version in their Azure ML workspace (e.g., 

prep_nyc_taxi_data_custom:2). This preserves the 

integrity and lineage of all asset versions, allowing 

for rollback and comparison. Similarly, significant 

changes to data sources or the software 

environment would warrant the creation of new 

versions for those respective assets. 
 

To assist users in managing multiple asset versions 

during such experimentation, the companion 

GitHub repository includes a utility script, 

pipeline_scripts/check_asset_versions.py. This 

script connects to the workspace and provides a 

listing of all available versions for specified data 

assets, components, and environments. While not 

part of the core pipeline execution flow, this utility 

can be a valuable tool for tracking the assets 

created during iterative development. 
 

To execute the pipeline with these newer, user-

modified asset versions, the 

07_run_nyc_taxi_pipeline.py script would require 

corresponding adjustments. Specifically, the 

sections where components are loaded (e.g., 

ml_client.components.get(name="prep_nyc_taxi_d

ata_custom", version="2")) and where input data 

assets are referenced (e.g., 

Input(path="azureml:my_data_asset:new_version"

)) would need to be updated to point to the new, 

desired version numbers. This disciplined 

approach to versioning all dependencies is key to 

maintaining robust, traceable, and adaptable 

machine learning workflows as projects evolve. 
 

CONCLUSION AND OUTLOOK 
This paper has furnished a practical, step-by-step 

guide to building and automating end-to-end 

machine learning training pipelines using the 

Azure Machine Learning Python SDK v2. 

Through a sequence of programmatic operations, 

readers have learned to establish a connection to 

an Azure ML workspace and provision essential 

compute infrastructure (Section II). Subsequently, 

the tutorial detailed the creation and registration of 

core MLOps assets: versioned Data Assets 

(URI_FILE and MLTable) for traceable data 

inputs, a custom Conda-based Environment for 

reproducible execution contexts, and modular, 

reusable Components for distinct pipeline tasks 

such as data preparation and model training, 

including the integration of MLflow for 

comprehensive experiment tracking and model 

registration (Section III). The assembly of these 

foundational elements into a complete, executable 

training pipeline for an NYC Taxi fare prediction 

example was then demonstrated, covering pipeline 

definition, submission, and result monitoring 

(Section IV). 
 

By completing this tutorial, practitioners gain not 

only a functional Azure ML training pipeline but 

also a suite of versioned assets—including a 

registered MLflow model—and, more importantly, 

the applied knowledge to use Azure ML for robust, 

automated, and reproducible MLOps workflows. 

The presented approach highlights key benefits: 

automation of the entire training lifecycle, 

reproducibility stemming from versioned assets 

and defined environments, modularity through 

self-contained components, and enhanced 

governance via MLflow's tracking capabilities. 
 

While this guide provides a strong foundational 

example, several considerations arise when 

extending these concepts to more complex, 

production-grade scenarios. Scaling pipelines may 

involve utilizing larger compute clusters, 

distributing component workloads, or optimizing 

data access patterns. Effective component 

design—emphasizing clear interfaces, independent 

testability, and minimal dependencies—along with 

diligent environment management, such as using 

lean, optimized base Docker images and regularly 

auditing package versions, are crucial for long-

term maintainability. Practitioners should also be 

mindful of potential challenges, such as managing 

intricate data lineage across multiple pipelines or 

integrating with enterprise security and networking 

policies, which often require bespoke solutions. 

The discussion on iteration and versioning 

(Section IV.D) provides initial guidance for 

managing the evolution of these ML systems. 
 



  

 
 

17 
 

Pujuri, J. Tec. Percep.  vol-1, issue-1 (2025) pp-1-17 

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 
 

Future enhancements to the demonstrated pipeline 

could include the addition of a dedicated model 

evaluation component, the integration of 

automated model deployment to an Azure ML 

Managed Endpoint for real-time or batch 

inference, and the implementation of automated 

retraining triggers based on data drift detection or 

model performance degradation monitoring. 

Incorporating advanced Responsible AI tools for 

fairness assessment and model explainability 

would further enrich the pipeline's production 

readiness. 
 

Ultimately, this tutorial equips developers and 

MLOps engineers with the foundational skills and 

understanding necessary to confidently develop, 

deploy, and manage sophisticated and reliable 

machine learning & training pipelines on the 

Azure platform, fostering a more mature and 

efficient approach to the machine learning 

lifecycle. 
 

ACKNOWLEDGMENT 

The author would like to acknowledge the use of 

Google's Gemini model for AI-assisted editing to 

improve the manuscript's grammar and clarity. 
 

REFERENCES 
1. Microsoft, "What is Azure Machine Learning? 

- Azure Machine Learning." Microsoft Docs, 

(2024).  

2. Microsoft, "What is Azure Machine Learning 

CLI and Python SDK v2? - Azure Machine 

Learning," Microsoft Docs, (2024).  

3. Microsoft, "azure-ai-ml – PyPI." Python 

Package Index, (2024).  

4. The Pandas Development Team, "pandas-

dev/pandas: Pandas." Zenodo, (2020).  

5. Pedregosa, F.  et al., "Scikit-learn: Machine 

Learning in Python," Journal of Machine 

Learning Research, vol. 12, pp. 2825-2830, 

(2011). 

6. Zaharia, M., Chen, A., Davidson, A., Ghodsi, 

A., Hong, S. A., Konwinski, A., ... & Zumar, 

C. "Accelerating the machine learning 

lifecycle with MLflow." IEEE Data Eng. 

Bull. 41.4 (2018): 39-45. 

 

 

 

 

Source of support: Nil; Conflict of interest: Nil. 
Cite this article as: 

Pujuri, J. ―A Practical Guide to Building End-to-End Azure Machine Learning Training Pipelines with Python 

SDK v2‖. Technology Perception 1.2  (2025): pp 1-17. 

 

 


