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Abstract: This paper delivers a practical, step-by-step guide to constructing, automating, and managing machine learning training
pipelines using the Azure Machine Learning (Azure ML) Python SDK v2. It systematically navigates the essential stages,
commencing with Azure ML workspace connection and the programmatic setup of requisite compute infrastructure. The guide then
details the creation of versioned foundational MLOps assets, including Data Assets for traceable data handling, custom Conda-based
Environments for execution reproducibility, and modular Components for discrete pipeline tasks such as data preparation and model
training. Emphasis is placed on integrating MLflow for comprehensive experiment tracking and model registration. The methodology
culminates in the assembly and execution of an end-to-end training pipeline, exemplified by an NYC Taxi fare prediction model,
illustrating the orchestration of these elements into a cohesive workflow. This tutorial aims to empower developers and MLOps
practitioners with the skills to develop modular, scalable, and reproducible ML solutions in the Azure cloud environment.
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INTRODUCTION

The Increasing Complexity and scale of machine
learning endeavors demand rigorous, automated,
and reproducible MLOps practices. A cornerstone
of effective MLOps is the systematic automation
of training pipelines, which significantly
accelerates the path from model conception to
reliable production deployment. Azure Machine
Learning (Azure ML) is a comprehensive cloud
platform for managing the complete ML lifecycle
(Microsoft, 2024). Specifically, the Azure ML
Python SDK v2 provides a sophisticated, code-first
interface for granular programmatic control over
all facets of ML experimentation and pipeline
orchestration (Microsoft, 2024). This empowers
practitioners with enhanced automation and a
deeper understanding of operational mechanics.

This paper delivers a practical guide for
constructing and automating ML training pipelines
using the Azure ML Python SDK v2. It addresses
core MLOps principles: ensuring reproducibility
through versioned assets and defined software
environments; promoting automation of intricate
workflows with modular, reusable components;
and enabling robust management of ML artifacts,
including MLflow integration for experiment
tracking and model registration. The tutorial
progresses from the programmatic setup of
foundational infrastructure, including compute
resources, to exploring core concepts like data
asset management, custom component creation,
and environment specification. By completing this
guide, readers will have assembled an end-to-end
training pipeline for a sample NYC Taxi fare
prediction model, culminating in a versioned,
ML flow-tracked model registered in Azure ML,

and thereby gaining tangible skills in building
automated, production-oriented ML solutions.

This guide is principally designed for developers,
and also for experienced data scientists, ML
engineers, and MLOps specialists, who possess
proficient Python programming skills and seek to
build production-oriented solutions. Access to an
Azure subscription is necessary; notably, the
entirety of this tutorial can be executed utilizing
the Azure free tier. However, practitioners are
strongly advised to exercise diligent cost
management,  particularly  concerning  the
provisioning and utilization of compute resources,
to prevent inadvertent expenditures.

PREREQUISITES AND
ENVIRONMENT SETUP

This tutorial is accompanied by a GitHub
repository  containing all  Python  scripts,
component YAML files, and the necessary data for
building the example pipeline (available at [Link
to Repository Placeholder - e.g.,
https://github.com/yourusername/azureml_sdk_v2
_tutorial]).

Before proceeding with the programmatic steps
outlined in this paper, users must ensure their local
development environment and Azure account are
correctly configured. Key prerequisites include an
active Azure subscription, an Azure Machine
Learning (Azure ML) Workspace, the config.json
file downloaded from this workspace, Azure
Command-Line Interface (CLI) authentication, and
a Python virtual environment into which the azure-
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ai-ml  (Microsoft, 2024) and azure-identity
packages are installed.

For comprehensive, step-by-step instructions to
fulfill these requirements, please consult the
README.md file within the aforementioned
GitHub repository. The subsequent sections
assume these foundational setup tasks have been
completed.

Establishing a Connection to the Azure ML
Workspace

Programmatic interaction with Azure ML services
begins with establishing an authenticated
connection to the workspace. Throughout this
tutorial, this connection is managed using a
dedicated utility script,
ml_client_connection_utils.py, located in the
pipeline_scripts directory of the companion
repository. This script encapsulates the logic for
instantiating the azure.ai.ml.MLClient, which
serves as the primary programmatic interface to
the Azure ML workspace.

The core function within this utility,
get_ml_client(), is designed for robustness and

ease of use. It primarily attempts to establish a
connection by loading workspace details from a
config.json file. The script intelligently searches
several common project directory locations for this
file, such as the project root or a dedicated
.azureml subfolder. This method, internally using
MLClient.from_config(credential=DefaultAzureCr
edential(), path=...), uses the
DefaultAzureCredential from the azure-identity
library, which supports multiple authentication
flows (e.g., Azure CLI login, environment
variables, managed identity) to suit various
execution  contexts. This  config.json-based
approach is the recommended pathway for this
tutorial.

As a fallback, if config.json is not found or if
explicitly bypassed, the get_ml_client() function
can utilize manually provided subscription ID,
resource group name, and workspace name
parameters for connection.

In the operational scripts that follow, such as
01_setup_azure_environment.py, the MLClient is
typically initialized by importing and calling this
utility function:

# pipeline_scripts/01 setup_azure_environment.py (Example Usage)

from ml_client_connection_utils import get_ml_client

# Attempt to connect to the Azure ML workspace
ml_client = get_ml_client()

if not ml_client:

# Further error handling or script exit would occur here

print("MLClient could not be initialized. Exiting script.")

exit(1)

print(f"Successfully connected to Azure ML workspace: {ml_client.workspace_name}")

# Azure ML operations using ml_client can now proceed

Fig. 1. Excerpt of 01_setup_azure_environment.py.

The complete, well-commented source code for
the ml_client_connection_utils.py utility, detailing
its search logic and error handling, is available in
the project's GitHub repository for review. This
utility ensures a consistent and simplified
connection mechanism across all subsequent
tutorial scripts.

Provisioning Essential Compute Resources

With the MLClient established, the next step is to
ensure the necessary Azure ML compute
infrastructure is available for executing pipeline
jobs. This tutorial primarily utilizes a managed
Azure ML Compute Cluster for running training

and data processing tasks. Optionally, an Azure
ML Compute Instance can be configured for
interactive development, though it is not essential
for the main pipeline execution.

The script

pipeline_scripts/01_setup_azure_environment.py

automates the provisioning of the required

compute cluster, named cc-nyc-taxi-cpu. This

script performs the following actions:

> Establishes a connection to the Azure ML
workspace using the get ml_client() utility
discussed previously.
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» Checks for the existence of the cc-nyc-taxi-cpu
compute cluster.

» If the cluster exists, it verifies if its
configuration (VM size, min/max instances)
matches the desired settings for the tutorial. If
not, it attempts to update the cluster.

> If the cluster does not exist, it creates a new
AmlCompute cluster with a specified VM size
(e.g., Standard_DS11_v2), configured to scale
down to zero instances when idle to optimize

costs, and a defined maximum number of
instances.

Key considerations when provisioning the
compute cluster include selecting an appropriate
VM size available in the user's Azure region and
ensuring sufficient vCPU quota for the chosen VM
family. The script 01_setup_azure_environment.py
encapsulates the SDK v2 logic for this:

# pipeline_scripts/01_setup_azure_environment.py (Snippet for AmlCompute)

from azure.ai.ml.entities import AmlCompute
cluster_name = "cc-nyc-taxi-cpu"
desired_vm_size = "Standard_DS11_v2"

# ... (other parameters like min/max instances)

try:

compute_cluster = ml_client.compute.get(cluster_name)

print(f"Found existing compute cluster ‘{cluster_name}'.")

# ... (logic for checking and updating if necessary) ...

except ResourceNotFoundError:

print(f*Compute cluster ‘{cluster_name}' not found. Creating new...")

compute_cluster_config = AmICompute(
name=cluster _name,
type="amlcompute",
size=desired_vm_size,
min_instances=0, # Essential for cost-saving
max_instances=1, # Tutorial default
idle_time_before_scale_down=120,
# ...

)

ml_client.compute.begin_create_or_update(compute_cluster_config).result()

print(f"Compute cluster ‘{cluster_name}' created.")

# ... (error handling) ...

Fig. 2. Excerpt of 01_setup_azure_environment.py.

The script also includes commented-out sections
for creating a Computelnstance (ci-nyc-taxi-dev),
which users can enable if an interactive
development environment within Azure ML
Studio is desired. The full
01_setup_azure_environment.py script is available
in the project repository.

With the workspace connection active and the
compute cluster provisioned, the environment is
now prepared for defining and managing the core
assets of the machine learning pipeline, which are
detailed in Section I11.

FOUNDATIONAL ELEMENTS OF

AZURE ML PIPELINES
With the Azure ML workspace connection
established and essential compute infrastructure

provisioned as detailed in Section I, the focus now
shifts to creating the core, versioned assets that
form the building blocks of an automated machine
learning pipeline.

This section details the programmatic creation of
data assets for traceable data handling, custom
environments for reproducible execution, and
modular components for individual pipeline steps,
culminating with the integration of MLflow for
robust experiment tracking and model governance.
These elements are created using specific Python
scripts that use the Azure ML SDK v2.

Data Management: Assets and Versioning

Effective MLOps practices mandate robust data
management, ensuring that data used for training
and evaluation is traceable, versioned, and easily
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accessible within the ML workflow. Azure ML The initial step involves uploading the local
Data Assets fulfill this role by providing versioned yellowTaxiData.csv ~ file  (located in the
pointers to data. This data can be uploaded from a raw_data_to_upload directory of the companion
local source to an Azure ML Datastore—a secure repository) to the workspace's default datastore
connection to Azure storage services like Azure and registering it as a versioned URI_FILE asset.
Blob Storage, which typically serves as the default This is accomplished by the
datastore for an Azure ML workspace—or it can pipeline_scripts/02_upload_and_register_csv_asse
reference data already in the cloud. t.py script. The script defines a Data object,

. . . specifying its name, the desired version (e.g., "1"
For our NYC Taxi fare prediction example, this for the initial run), a description, the local path to
tutorial first creates a URI_FILE Data Asset by the data file and the type as

uploading the raw CSV data, and subsequently, an AssetTvpes. URI FILE. The Azure ML SDK then
MLTable Data Asset is created to provide a handlesyp tHe u_pload. and  registration when

structured_, typed interface to this data for pipeline m_client.data.create_or_update() is called.
consumption.

# pipeline_scripts/02_upload_and_register_csv_asset.py (Key Snippet)
from azure.ai.ml.entities import Data
from azure.ai.ml.constants import AssetTypes

# ... (ml_client and local_data_path are defined) ...

data_asset_name = "nyc-taxi-raw-yellow-csv"
data_asset version ="1"

my_raw_data_asset = Data(
name=data_asset_name,
version=data_asset_version,
description=f"Raw NYC Yellow Taxi data ({local_csv_file_name}) uploaded...",
path=Ilocal_data_path, # SDK handles upload from this local path
type=AssetTypes.URI_FILE
)
registered_data_asset = ml_client.data.create_or_update(my_raw_data_asset)
# The registered_data_asset.path will now point to the cloud URI

Fig. 3. Excerpt of 02_upload_and_register_csv_asset.py.

This process results in the nyc-taxi-raw-yellow- with its path attribute reflecting its new location in
csv:1 data asset being available in the workspace, Azure cloud storage.

Azure subscription 1

L i udis & € =
Azure Al | Machine Learning Studio @ B v i I

Default Directory miw-nye-taxi-tutorial Data nyc-taxi-raw-yellow-csv

< workspaces F
All kspace: nyc-tam-raw-yelIOW-CSV Version: 1 (latest)

G Home
Details ~ Consume  Explore  Jobs
(@ Model catalog

Authoring @ Refresh

[El Motebooks

#5 Automated ML
& Designer
Path File Name  Modified... Created T... File Size File Format  CanSeek
> Prompt flow Preview
AocalUpl..  yellowTaxi.. 2025-05-1.. 2025-05-1.. 797451 csv true Displaying first 0.1 MiB of source data
Display as grid @)  With column headers (@ )

1 S5 Data Column1 Columnz Column3 Columnd4 ColumnS Columné C
vendorlD  tpepPic..  tpepDro.. passeng.. tripDista. pulocati. de

2016-01.. 201601 1 2.09 null
1 2016-01..  2016-01.. 3 15 null
1 2016-01.. 201601 1 18 null

2016-01.. 201601 1 195 null

2 2016-01 2016-01 1 36

2 2016-01 2016-01 1 1022 null

2016-01 2016-01 1 146 null

2 2016-01 2016-01 1 101

2016-01 2016-01 387 null

1
2016-01 2016-01.. 5 59 null
2

‘‘‘‘ . 1 2016-01 2016-01... 1.8

1 2016-01 2016-01.. 1 09 null

Fig. 4. The nyc-taxi-raw-yellow-csv, uploaded and registered to Azure’s default data store.
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Once the raw CSV data is in the cloud and
registered as a URI_FILE asset, an MLTable asset
is created to provide a structured, versioned
pointer to this tabular data. The MLTable itself, in
this tutorial, does not perform transformations;
instead, it acts as a schema-aware reference, with

The script
pipeline_scripts/03_create_mltable_asset.py

orchestrates this. It first retrieves the cloud URI of
the previously created nyc-taxi-raw-yellow-csv:1
asset. Then, it dynamically generates the content
for an MLTable definition file. This definition

CSV parsing details deferred to the data
preparation component for explicit control.

simply contains a paths directive pointing to the
cloud URI of the CSV file.

# pipeline_scripts/03_create_mltable_asset.py (Key Snippet for MLTable definition)
# ... (fully_qualified_csv_uri obtained from the URI_FILE asset) ...

mitable_definition_content = {
"type": "mitable",
"paths": [{"file": fully_qualified_csv_uri}]
}
# This content is written to a local temporary file named 'MLTable'
# in a temporary directory (e.g., "../temp_mltable_def_csv_pointer/MLTable").

Fig. 5. Excerpt of 03_create_mltable_asset.py.

This local directory containing the MLTable file is then used as the path when creating a new Data asset of
type AssetTypes.MLTABLE.

# pipeline_scripts/03_create_mltable_asset.py (Key Snippet for MLTable registration)
# ... (local_mltable_def_dir is the path to the directory holding the 'MLTable' file) ...

mltable_asset_name = "nyc-taxi-mltable-yellow-csv"
mltable_asset version ="1"

my_mltable_asset = Data(
name=mltable_asset _name,
version=mltable_asset version,
description=f"MLTable (simple pointer) referencing ...",
path=local_mltable_def dir, # Path to the folder containing the MLTable definition file
type=AssetTypes.MLTABLE

)

registered_mltable_asset = ml_client.data.create_or_update(my_mltable_asset)

Fig. 6. Excerpt of 03_create_mltable_asset.py.

Upon successful execution, the nyc-taxi-mltable-yellow-csv:1 asset is registered.
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Azure Al | Machine Learning Studio

o | Azure subscription 1
~

= Default Directory miw-nyc-taxi-tutorial Data

< Allworkpaces nyc-taxi-mitable-yellow-csv

M Home
Details ~ Consume  Explore  Jobs
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Authoring ) Refresh

El Notebooks N

Preview  Profile
5 Automated ML —
& Designer Number of columns: 7 Number of rows: 1 {of 1)
> Prompt flow Path File Name Modified... Created T... File Size
/localUpl..  yellowTaxi.. 2025-05-1.. 2025-05-1.. 797451

Assets
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27 Ppipelines

Manage

& Compute
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e Linked Services msviow

& Connections e

nyc-taxi-mitable-yellow-csv
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paths

- file: azureml://subscriptions/4948a352-68ab-47a9-8407-438a0ac318/reso

This MLTable asset will serve as the typed input
for the data preparation step in the main pipeline,
ensuring that the pipeline consumes a specific,
versioned representation of the tabular data.

Custom Components for Modularity and
Reusability

Azure ML Components are self-contained,
reusable units of code that perform specific tasks
within a pipeline, such as data preparation, model
training, or evaluation. They encapsulate the
execution logic, define necessary inputs and
outputs, and specify the runtime environment. This
component-based architecture is fundamental to
building modular, scalable, and maintainable ML
pipelines, aligning with MLOps best practices by
promoting the separation of concerns and
facilitating the independent development and
testing of pipeline steps.

Fig. 7. The nyc-taxi-mltable-yellow-csv, uploaded and registered to Azure’s default data store.

Defining Reproducible Runtime Environments:
To ensure that component code executes
consistently and reliably across different
development and execution contexts, Azure ML
utilizes Environments. An Environment defines
the software runtime, including the operating
system (via a base Docker image), Python
packages, system libraries, and environment
variables.

For this tutorial, a custom Conda environment is
defined in environments/nyc_taxi_env.yml to
specify all dependencies required by the pipeline
components, such as scikit-learn, pandas, mlflow,
and azureml-miflow.

The environments/nyc_taxi_env.yml file lists
Python and package versions to ensure
reproducibility:

# ~/azureml_sdk_v2_tutorial/environments/nyc_taxi_env.yml (Key Snippet)

name: nyc-taxi-tutorial-conda-env
channels:
- conda-forge
- defaults
dependencies:
- python=3.8.13
- pip=22.3.1
- scikit-learn=1.0.2
- pandas=1.5.3
- numpy=1.23.5
- miflow==2.3.0
- pip:
- azureml-mlflow==1.50.0
- mltable==1.5.0

Fig. 8. Excerpt of nyc_taxi_env.yml.
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It is important to note that the name field within
the Conda YAML (nyc-taxi-tutorial-conda-env) is
for Conda's internal use and is distinct from the
name given to the Azure ML Environment asset
when it is registered.

This script instantiates an Environment object,
providing a name for the asset (e.g., nyc-taxi-
component-env), a version string (e.g., "1"), a
description, the path to the local Conda YAML
file, and a reference to a base Docker image (e.g.,

mcr.microsoft.com/azureml/openmpi4.1.0-
ubuntu20.04:latest) upon which Azure ML will
build the specified Conda environment.

This Conda definition is then registered as a
versioned Azure ML Environment asset using the
script
pipeline_scripts/04_create_environment_asset.py.

# pipeline_scripts/04_create_environment_asset.py (Key Snippet)
from azure.ai.ml.entities import Environment

# ... (ml_client and conda_env_file_path_local are defined) ...

environment_name = "nyc-taxi-component-env"
environment_version = "1"

custom_environment = Environment(
name=environment_name,
version=environment_version,
description="Custom Conda environment for NYC Taxi pipeline components...",
conda_file=conda_env_file_path_local,
image="[mcr.microsoft.com/azureml/openmpi4.1.0-
ubuntu20.04:latest](https://mcr.microsoft.com/azureml/openmpi4.1.0-ubuntu20.04:latest)"
)

registered_environment = ml_client.environments.create_or_update(custom_environment)
# The actual Docker image build occurs when this environment is first used by a job.

Fig. 9. Excerpt of 04_create_environment_asset.py.

Registering the environment (e.g., as nyc-taxi-component-env:1) makes it available within the Azure ML
workspace.

Azure subscription 1
miw-nye-taxi-tutorial

Azure Al | Machine Learning Studio ? © |

Default Directory > mlw-nyc-taxi-tutorial > Environments > nyc-taxi-component-env

nyc-taxi-component-env | Version: 1 (latest)
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< Linked Services e w

& Connections sview

mr Home
Details Context Build IDg Jobs
[f§ Model catalog
Authoring () Refresh & Rebuild =1 Archive T, Share environment
] Notebooks
s Properties Docker image V74
& Automated ML
Environment image build status Parent image
& Designer 3 .
© Running mer.microsoft.com/azureml/openmpid.1.0-ubuntu20.04:latest

Name
nyc-taxi-component-eny

Created by
Damaso Sanoja

Creation date
May 12, 2025 7:12 PM

Version
1

Environment operating system
Linux

Asset ID

azureml://locations/eastus2/workspaces/079bc40b-38bb-4eb9-8998-

63cefBca308c/environments/nyc-taxi-component-env/versions/1

Description

Custom Conda envirann
learn, pandas, miflow, mitable

Tags

(D Notags

ment for NYC Taxi pipeline components (v1). Includes sci

Conda &

1 channels:
2 - conda-forge
3 - defaults

4 dep

encies:

- python=3.8.13
6 - pip=22.3.1

7 - scikit-learn=1.0.2
8 - pandas=1.5.3

9 - numpy=1.23.5

10 - mlflow==2.17.2

11 = pip:
12 zureml-mlf low==1.50.0

13 - mitable==1.5.0

14 ame: nyc-taxi-tutorial-conda-env
15

kit

Fig. 10. The nyc-taxi-component-env, registered as a Conda environment in Azure Studio.
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Subsequent pipeline components will reference
this registered environment to ensure that their
code executes within this exact, reproducible
software configuration. This practice mitigates
issues related to dependency conflicts or "works
on my machine” problems, which are critical
concerns in production ML systems.

Creating a Custom Component: With a
reproducible environment defined and registered,
the next step is to create custom components that
encapsulate specific stages of the ML workflow.

For this tutorial, a data preparation component is
developed first. This involves two main parts: the
Python script containing the data processing logic,
and a YAML component definition file that
specifies the component's interface, inputs,
outputs, the script to execute, and the environment
it runsin.

The core logic for data preparation is implemented
in the Python script
components/prep_data/src/prep_data.py. This
script is designed to be executed from the
command line and accepts arguments for the raw

data input path, the output path for prepared data, a

test split ratio, and a random state for

reproducibility. Internally, it performs several
operations:

» Loads the raw CSV data (passed as a
URI_FILE by the pipeline) into a pandas
DataFrame (The Pandas Development Team,
2020).

» Applies basic filtering (e.g., removing records
with zero passenger count or fare amount).

» Converts and validates datetime columns,
handling potential NaT values.

» Engineers new temporal features such as hour
of day, day of week, and month from the
pickup datetime.

» Selects relevant features for model training
and the target variable (fareAmount).

» Handles potential infinite values and missing
values in the target variable.

> Ensures all feature columns are numeric,
coercing types and imputing remaining NaNs
in feature columns using the median.

» Splits the processed data into training and
testing sets using
sklearn.model_selection.train_test_split.  (F.
Pedregosa et al., 2011)

» Saves the resulting training and testing
DataFrames as Parquet files
(train_data.parquet, test_data.parquet) into
designated subfolders within the component's
output path.

The interface for this data preparation component
is defined in
components/prep_data/prep_data_component.yml.
This YAML file specifies metadata such as the
component's name (prep_nyc_taxi_data_custom),
version ("1"), display_name, and description.
Crucially, it defines the expected inputs (e.g.,
raw_data_input_path of type uri_file,
test_split_ratio of type number) and outputs (e.g.,
prepared_data_path of type uri_folder). The code
key points to the src/ directory containing
prep_data.py, and the environment key references
the previously registered nyc-taxi-component-
env:l. The command section details how to
execute prep_data.py, mapping the component's
inputs and outputs to the script's command-line
arguments using Azure ML's expression syntax.

A key snippet from prep_data_component.yml
illustrates the input, output, and command
definition:

# components/prep_data/prep_data_component.yml (Key Snippet)
$schema: https://azuremlschemas.azureedge.net/latest/commandComponent.schema.json

name: prep_nyc_taxi_data_custom
version: 1
type: command
inputs:
raw_data_input_path:
type: uri_file
test_split_ratio:
type: number
default: 0.2
# ... (other inputs)
outputs:
prepared data path:
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type: uri_folder
code: ./src/ # Points to the directory containing prep_data.py
command: >-
python prep_data.py
--raw_data_input_path ${{inputs.raw_data_input_path}}
--prepared_data_path ${{outputs.prepared_data_path}}
--test_split_ratio ${{inputs.test_split_ratio}}
# ... (other arguments)
environment: azureml:nyc-taxi-component-env:1

Fig. 11. Excerpt of prep_data_component.yml.

To make this component available for use in load_component() function to parse the YAML
pipelines, it is registered in the Azure ML definition file. The loaded component object is
workspace using the script then passed to
pipeline_scripts/05_register_prep_component.py. ml_client.components.create_or_update() for
This script uses the Azure ML SDK's registration.

# pipeline_scripts/05_register_prep_component.py (Key Snippet)
from azure.ai.ml import load_component

# ... (ml_client and component_yaml_path_local are defined) ...

# Load component definition from YAML
data_prep_component = load_component(source=component_yaml_path_local)

# Register the component
registered_component = ml_client.components.create_or_update(data_prep_component)

print(f*Successfully registered component: {registered_component.name} version
{registered_component.version}")

Fig. 12. Excerpt of 05_register_prep_component.py.

Once registered (e.g., as as a versioned, reusable step in various machine
prep_nyc_taxi_data_custom:1), this data learning pipelines.
preparation component can be readily incorporated

‘ Azure subscription 1
(&) ~

Azure Al | Machine Learning Studio T ird
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Fig. 13. The prep_nyc_taxi_data_custom Component preview in Azure Studio.
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This modular approach simplifies pipeline
construction and maintenance, as the component's
logic can be updated and versioned independently.

Experiment Tracking and Model Governance with
MLflow

Comprehensive experiment tracking and model
management are critical for iterative development
and production-grade MLOps. Azure Machine
Learning seamlessly integrates with MLflow, an
open-source platform for managing the end-to-end
machine learning lifecycle (Zaharia, M. et al.,
2018). This integration allows for automatic
tracking of runs, parameters, metrics, artifacts, and
models within the Azure ML workspace, providing
a centralized location for governance and
reproducibility.

The model training component for the NYC Taxi
fare prediction task, defined by
components/train_model/train_model_component.
yml and its corresponding script
components/train_model/src/train_model.py, uses
this MLflow integration extensively. The
train_model.py script is responsible for:

» Loading the prepared training data (output
from the data preparation component).

» Training a regression model (e.g.,
sklearn.linear_model.Ridge in this tutorial).

» Within an miflow.start_run() context, logging
key aspects of the training process:

Parameters: Hyperparameters like alpha and
other configuration details are logged using
mlflow.log_param().

Metrics: Evaluation metrics calculated on the
training data, such as Root Mean Squared Error
(RMSE) and R-squared (R2) score, are logged
using miflow.log_metric().

Model Artifacts: The trained scikit-learn model is
logged using mlflow.sklearn.log_model(). This
function also facilitates including a model
signature (inferred from sample input and output
data using
mlflow.models.signature.infer_signature) and an
input_example. Crucially, by specifying the
registered_model_name argument within
mlflow.sklearn.log_model(), the model is not only
saved as an artifact of the MLflow run but is also
automatically registered or versioned within the
Azure ML Model Registry.

Other Artifacts: Additional files, such as a text
file containing the names of features used for
training (feature_names.txt), can be logged using
mlflow.log_artifact().

Key snippets from
components/train_model/src/train_model.py
illustrate these MLflow logging operations:

# components/train_model/src/train_model.py (Key MLflow Snippets)

import mlflow
import mlflow.sklearn

from miflow.models.signature import infer_signature

# ... (inside main function and after loading data as X_train, y_train) ...

with mliflow.start_run() as run:

mlflow.log_param(“alpha_hyperparameter”, args.alpha)

# ... (other parameters) ...

model = Ridge(alpha=args.alpha, random_state=args.random_state)

model.fit(X_train, y_train)

predictions_train = model.predict(X_train)

rmse_train = mean_squared_error(y_train, predictions_train, squared=False)

r2_train = r2_score(y_train, predictions_train)
mlflow.log_metric("training_rmse", rmse_train)

mliflow.log_metric("training_r2_score", r2_train)

input_example_df = X_train.head()

example_predictions = model.predict(input_example_df)
signature = infer_signature(input_example_df, example_predictions)
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mliflow.sklearn.log_model(
sk_model=model,
artifact_path="nyc_taxi_fare_model_files",

registered_model_name=args.registered_model_name,

signature=signature,
input_example=input_example_df

)

# Example of logging an additional artifact

# with open(“'feature_names.txt", 'w') as f: # features are written to this file

# # ... write feature names ...

# mlflow.log_artifact("feature_names.txt", artifact_path="training_run_details")

Fig. 14. Excerpt of train_model.py.

The

components/train_model/train_model_component.
yml file defines the interface for this training
component. It specifies inputs such as the path to
prepared data (prepared_data_input_path),
hyperparameters like alpha, and the
registered_model_name. It also declares an output
(model_output_mliflow of type uri_folder), which
can be used for auxiliary files like a training
summary, distinct from the MLflow-managed
model artifacts. Similar to the data preparation
component, it references the nyc-taxi-component-
env:1l environment and defines the command to

execute train_model.py with the necessary
argument bindings.

Finally, the script
pipeline_scripts/06_register_train_component.py

registers this training component. It follows the
same pattern as the data preparation component
registration: it loads the component definition from

train_model_component.yml using
load_component() and then uses
ml_client.components.create_or_update() to

register it in the Azure ML workspace (e.g., as
train_nyc_taxi_model_custom:1).

# pipeline_scripts/06_register_train_component.py (Key Snippet)

from azure.ai.ml import load_component

# ... (ml_client and component_yaml_path_local for train_model_component.yml are defined) ...

model_train_component = load_component(source=component_yaml_path_local)
registered_component = ml_client.components.create_or_update(model_train_component)

print(f"Successfully registered
{registered_component.version}")

component:

{registered_component.name} version

Fig. 15. Excerpt of 06_register_train_component.py.

By registering this training component, which
internally handles all MLflow logging and model

registration, a modular and traceable approach to
model training and governance is established.
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Fig. 16. The train_nyc_taxi_model_custom Component in Azure Studio.

The resulting MLflow runs and registered models
in Azure ML provide a comprehensive audit trail
and facilitate model deployment and lifecycle
management, which will be demonstrated when
the full pipeline is assembled in Section IV.

ASSEMBLING AND EXECUTING THE
NYC TAXI FARE PREDICTION
PIPELINE

This section demonstrates the culmination of the
concepts and assets developed in Section I,
detailing the construction, execution, and
monitoring of an automated training pipeline for
the NYC Taxi fare prediction example.

The primary script guiding this process is
pipeline_scripts/07_run_nyc_taxi_pipeline.py.
This walkthrough will show how the versioned
Data Assets, custom Environment, and modular
Components are orchestrated into a cohesive and
reproducible MLOps workflow using the Azure
ML Python SDK v2.

Pipeline Definition: Orchestrating Components

The core of the automated workflow is an Azure
ML pipeline defined programmatically using a
Python function and the @pipeline decorator from
the azure.ai.ml.dsl module. This approach provides
a clear and maintainable way to define the
sequence of operations, data dependencies, and
parameterization of the entire training process.

The pipeline_scripts/07_run_nyc_taxi_pipeline.py
script begins by establishing a connection to the
Azure ML workspace and verifying the essential
cc-nyc-taxi-cpu compute target. It then proceeds to
load the specific, versioned components that were
registered in Section IlI:

Loading Registered = Components: The
prep_nyc_taxi_data _custom:1 (data preparation)
and  train_nyc taxi_model_custom:1  (model
training) components are retrieved from the
workspace using ml_client.components.get(). This
ensures that the pipeline consistently utilizes
version "1" of these building blocks, which is the
version created by the tutorial's preceding scripts.
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# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Snippet: Loading components)
prep_component_name = "prep_nyc_taxi_data_custom"
prep_component_version = "1"

train_component_name = "train_nyc_taxi_model_custom"

train_component_version = "1"
prep_data_component_func =
version=prep_component_version)
train_model_component_func =
version=train_component_version)

ml_client.components.get(hame=prep_component_name,

ml_client.components.get(name=train_component_name,

Fig. 17. Excerpt of 07_run_nyc_taxi_pipeline.py.

Defining the Pipeline Function: A Python
function, nyc taxi_pipeline_tutorial run in this
case, is decorated with @pipeline. This decorator
registers the function as a pipeline definition with
Azure ML, allowing it to be instantiated and run as
a job. The function defines:

Pipeline-Level Inputs: These are parameters that
can be passed to the pipeline at runtime. For this
example, pipeline_input_data (of type Input from
azure.ai.ml) is defined to accept the raw input data,
pipeline_alpha_for_training allows specifying the
Ridge regression hyperparameter, and
pipeline_model_registration_name dictates the
name under which the trained model will be
registered.

Component Instantiation as Jobs: Inside the
pipeline function, jobs are created by calling the

instance, parameters like test_split_ratio for the
data preparation job are explicitly set within the
pipeline, overriding any defaults from the
component's YAML if needed.

Data Flow and Dependency Management: The
critical connection between components s
established by directing the output of one
component job to the input of a subsequent one.
The prepared_data_path output from the
prep_data_job is passed as the
prepared_data_input_path to the train_model_job.
Azure ML automatically manages the data transfer
or mounting based on these defined dependencies.

Pipeline Outputs: The pipeline can also declare
its own outputs, often sourced from the outputs of
its constituent component jobs, such as the path to
the prepared data and the training summary

loaded component functions (e.g., location.
prep_data_component_func(...)). Inputs are passed
to these component jobs, including pipeline-level

inputs or outputs from preceding steps. For

A conceptual representation of the pipeline
definition within 07_run_nyc_taxi_pipeline.py:

# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Conceptual Pipeline Definition)
from azure.ai.ml.dsl import pipeline
from azure.ai.ml import Input

@pipeline(
name="nyc_taxi_training_pipeline_v1_final",
display_name="NYC Taxi Fare Prediction Training Pipeline (v1 - Tutorial Run)"
# ... other pipeline metadata
)
def nyc_taxi_pipeline_tutorial_run(
pipeline_input_data: Input,
pipeline_alpha_for_training: float = 1.0,
pipeline_model_registration_name: str = "nyc-taxi-fare-predictor"
):
prep_data_job = prep_data_component_func( # Loaded component
raw_data_input_path=pipeline_input_data,
test_split_ratio=0.2
# ... other inputs

)

train_model_job = train_model_component_func( # Loaded component
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alpha=pipeline_alpha_for_training,
# ... other inputs

)

return { # Defining pipeline outputs

¥

prepared_data_input_path=prep_data_job.outputs.prepared_data_path, # Wiring output to input

registered_model_name=pipeline_model_registration_name

"pipeline_prepared_data_output": prep_data_job.outputs.prepared_data_path,
"pipeline_model_training_summary_output": train_model_job.outputs.model_output_mliflow

Fig. 18. Excerpt of 07_run_nyc_taxi_pipeline.py.

Pipeline Instantiation and Execution

Once the pipeline structure is defined via the
decorated Python function, it must be instantiated
as a PipelineJob object and configured for
execution:

Instantiating the Pipeline: The pipeline function
(nyc_taxi_pipeline_tutorial_run) is called. For this
tutorial's initial run, it is invoked by passing an

Input object that references the nyc-taxi-raw-
yellow-csv:1 data asset (created in Section I11.A)
as the pipeline_input_data. Specific values for
other pipeline parameters like
pipeline_alpha_for_training and
pipeline_model_registration_name are also
provided at this stage.

# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Snippet: Instantiating the pipeline)

input_data_asset_name = "'nyc-taxi-raw-yellow-csv"

input_data_asset_version ="1"

# ... (code to get input_data_for_pipeline object) ...

pipeline_job = nyc_taxi_pipeline_tutorial_run(
pipeline_input_data=Input(type="uri_file",

path=f"azureml:{input_data_for_pipeline.name}:{input_data_for_pipeline.version}"),

pipeline_alpha_for_training=0.5,

pipeline_model_registration_name="nyc-taxi-fare-predictor-tutorial-v1"

)

Fig. 19. Excerpt of 07_run_nyc_taxi_pipeline.py.

Setting Default Compute Target: A crucial step
for ensuring the pipeline jobs run on the intended
infrastructure is to assign a default compute target
to the pipeline job instance. This is done
programmatically after the pipeline job is

instantiated by setting its settings.default_compute
attribute. For this tutorial, the cc-nyc-taxi-cpu
compute cluster (provisioned in Section 11.B) is set
as the default.

# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Snippet: Setting default compute)
pipeline_job.settings.default_compute = "cc-nyc-taxi-cpu"

Submitting the Pipeline Job: The configured
pipeline_job is then submitted to Azure ML using

nyc_taxi_tutorial_pipeline_v1_runs) is provided to
group and organize related pipeline runs within the

ml_client.jobs.create_or_update(). An Azure ML Studio, facilitating easier tracking and
experiment_name (e.g., comparison.
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# pipeline_scripts/07_run_nyc_taxi_pipeline.py (Snippet: Submitting the job)

returned_pipeline_job = ml_client.jobs.create_or_update(

pipeline_job,

experiment_name="nyc_taxi_tutorial_pipeline_v1 runs"

print(f"Pipeline job submitted successfully.”)

print(f* Job Name: {returned_pipeline_job.name}")

print(f* View in Azure ML Studio: {returned_pipeline_job.studio_url}")

Monitoring and Reviewing Pipeline Results
Upon successful submission, the
07_run_nyc_taxi_pipeline.py script outputs a URL
to the pipeline run in Azure ML Studio. This web
interface is central to monitoring and
understanding the pipeline's execution:

Visualize the Pipeline Graph: The Studio
presents a directed acyclic graph (DAG) of the
pipeline, visually representing the components,
their execution order, and data dependencies.

Monitor Run Status: Users can track the real-
time status of the overall pipeline and each
individual component job (e.g., Preparing,
Running, Completed, Failed).

Inspect Component Details: Each component job
in the graph can be selected to view its specific
inputs, outputs, parameters, and, importantly, its
execution logs. These logs include standard output
(std_log.txt), which contains messages printed by
the component scripts (e.g., prep_data.py and

Azure Al | Machine Learning Studio

train_model_job

E2 Navigator 4 ORI

train_model.py), crucial for debugging and
verification.

Review MLflow Tracking Data: For the model
training component
(train_nyc_taxi_model_custom:1), the "Metrics"
tab will display metrics logged via MLflow (e.g.,
training_rmse, training_r2_score). The "Outputs +
logs" tab will contain artifacts logged by MLflow,
including the model files themselves (typically
under a path like nyc_taxi_fare_model_files) and
any additional artifacts like feature_names.txt. The
model registered via MLflow will also be
versioned and available in the workspace's central
"Models" registry.

Access Pipeline Outputs: If the pipeline
definition included a return statement to declare
pipeline-level outputs (as shown in the conceptual
snippet), these outputs can be found and
downloaded from the "Outputs + logs" tab of the
parent pipeline run.

100% @ a @ [ &%

Fig. 20. Completed NYC Taxi Fare pipeline in Azure Studio.
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Considerations for Iteration and Version
Management

The scripts and pipeline definition detailed in this
tutorial are intentionally structured for a "clean
run," consistently utilizing version "1" of all
created Data Assets, the custom Environment, and
both custom Components. This approach is
designed to  ensure  predictability and
reproducibility for readers undertaking the tutorial
for the first time.

However, real-world machine learning
development is an inherently iterative process.
Should a user modify the underlying logic or
interface of a component (e.g., change feature
engineering steps in prep_data.py, alter its YAML
definition, or update the model architecture in
train_model.py), it is a fundamental MLOps best
practice to register this modified entity as a new
version in their Azure ML workspace (e.g.,
prep_nyc_taxi_data_custom:2). This preserves the
integrity and lineage of all asset versions, allowing
for rollback and comparison. Similarly, significant
changes to data sources or the software
environment would warrant the creation of new
versions for those respective assets.

To assist users in managing multiple asset versions
during such experimentation, the companion
GitHub repository includes a utility script,
pipeline_scripts/check_asset_versions.py. This
script connects to the workspace and provides a
listing of all available versions for specified data
assets, components, and environments. While not
part of the core pipeline execution flow, this utility
can be a valuable tool for tracking the assets
created during iterative development.

To execute the pipeline with these newer, user-
modified asset Versions, the
07_run_nyc_taxi_pipeline.py script would require
corresponding adjustments.  Specifically, the
sections where components are loaded (e.g.,
ml_client.components.get(name="prep_nyc_taxi_d
ata_custom", version="2")) and where input data
assets are referenced (e.q.,
Input(path="azureml:my_data_asset:new_version"
)) would need to be updated to point to the new,
desired version numbers. This disciplined
approach to versioning all dependencies is key to
maintaining robust, traceable, and adaptable
machine learning workflows as projects evolve.

CONCLUSION AND OUTLOOK
This paper has furnished a practical, step-by-step
guide to building and automating end-to-end

machine learning training pipelines using the
Azure Machine Learning Python SDK v2.
Through a sequence of programmatic operations,
readers have learned to establish a connection to
an Azure ML workspace and provision essential
compute infrastructure (Section Il). Subsequently,
the tutorial detailed the creation and registration of
core  MLOps assets: versioned Data Assets
(URL_FILE and MLTable) for traceable data
inputs, a custom Conda-based Environment for
reproducible execution contexts, and modular,
reusable Components for distinct pipeline tasks
such as data preparation and model training,
including the integration of MLflow for
comprehensive experiment tracking and model
registration (Section IlI). The assembly of these
foundational elements into a complete, executable
training pipeline for an NYC Taxi fare prediction
example was then demonstrated, covering pipeline
definition, submission, and result monitoring
(Section 1V).

By completing this tutorial, practitioners gain not
only a functional Azure ML training pipeline but
also a suite of versioned assets—including a
registered MLflow model—and, more importantly,
the applied knowledge to use Azure ML for robust,
automated, and reproducible MLOps workflows.
The presented approach highlights key benefits:
automation of the entire training lifecycle,
reproducibility stemming from versioned assets
and defined environments, modularity through
self-contained  components, and enhanced
governance via MLflow's tracking capabilities.

While this guide provides a strong foundational
example, several considerations arise when
extending these concepts to more complex,
production-grade scenarios. Scaling pipelines may
involve utilizing larger compute clusters,
distributing component workloads, or optimizing
data access patterns. Effective component
design—emphasizing clear interfaces, independent
testability, and minimal dependencies—along with
diligent environment management, such as using
lean, optimized base Docker images and regularly
auditing package versions, are crucial for long-
term maintainability. Practitioners should also be
mindful of potential challenges, such as managing
intricate data lineage across multiple pipelines or
integrating with enterprise security and networking
policies, which often require bespoke solutions.
The discussion on iteration and versioning
(Section 1V.D) provides initial guidance for
managing the evolution of these ML systems.
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Future enhancements to the demonstrated pipeline
could include the addition of a dedicated model
evaluation component, the integration of
automated model deployment to an Azure ML
Managed Endpoint for real-time or batch
inference, and the implementation of automated
retraining triggers based on data drift detection or
model performance degradation monitoring.
Incorporating advanced Responsible Al tools for
fairness assessment and model explainability
would further enrich the pipeline's production
readiness.

Ultimately, this tutorial equips developers and
MLOps engineers with the foundational skills and
understanding necessary to confidently develop,
deploy, and manage sophisticated and reliable
machine learning & training pipelines on the
Azure platform, fostering a more mature and
efficient approach to the machine learning
lifecycle.
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