
Sarcouncil Journal of Multidisciplinary

ISSN(Online): 2945-3445

907

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 (CC BY-NC-

ND 4.0) International License

*Corresponding Author: Deepak Jaiswal

DOI- https://doi.org/10.5281/zenodo.16419992

Volume- 05| Issue- 07| 2025

Review Article Received: 13-06-2025 | Accepted: 07-07-2025 | Published: 25-07-2025

Cloud-Native Transformation of SIP/IMS Core Networks: A Microservices

Architecture for Next-Generation Telecommunications

Deepak Jaiswal

Independent Researcher, USA

Abstract: Traditional mobile voice and messaging cores built on monolithic Session Initiation Protocol (SIP) and IP Multimedia

Subsystem (IMS) appliances present significant challenges in terms of upgrade complexity, operational inflexibility, and

maintenance overhead. This article presents a comprehensive architectural transformation that decomposes legacy IMS functions into

logically stateless microservices. Session state is off-loaded to highly available, distributed data stores, while Kubernetes orchestrates

the containers. The proposed architecture externalizes critical functions including registration management, policy enforcement, and

dialog management into discrete services, enabling independent scaling and deployment. A service mesh layer provides fine-grained

traffic management (circuit breaking and retries) and secures all call-control traffic with mutual TLS (mTLS); media streams are
protected separately with Secure Real-time Transport Protocol (SRTP) using Datagram Transport Layer Security (DTLS) for key

exchange. The architecture incorporates an event-driven backbone utilizing publish/subscribe streaming to capture billing records,

analytics data, and lawful intercept information without impacting real-time call processing performance. Each microservice
maintains strict alignment with relevant 3GPP specifications while embracing DevSecOps practices that treat OpenAPI contracts as

primary development artifacts. By separating immutable container images from configuration data and using blue-green deployment

with automated rollout gates, the architecture significantly reduces maintenance windows while maintaining carrier-grade reliability.
The transformation enables telecommunications operators to achieve operational agility comparable to cloud-native enterprises while

adhering to stringent regulatory requirements and zero-trust security principles, ultimately delivering enhanced service availability.

Keywords: cloud-native telecommunications, IMS microservices, SIP decomposition, Kubernetes orchestration, service mesh.

INTRODUCTION
The telecommunications industry has witnessed a

fundamental shift in how mobile voice and

messaging core networks are designed and

deployed. Traditional implementations relied

heavily on purpose-built hardware appliances that

integrated Session Initiation Protocol (SIP) and IP

Multimedia Subsystem (IMS) functions into

tightly coupled monolithic systems (Amogh, P. C.

et al., 2017). These legacy architectures, while

robust and field-proven, increasingly struggle to

meet the agility demands of modern

telecommunications services. The emergence of

cloud-native principles offers a transformative

approach to address these limitations through

decomposition of monolithic cores into discrete,

manageable microservices.

Evolution from Monolithic to Cloud-Native

Architectures

The journey from monolithic to cloud-native

architectures in telecommunications represents a

paradigm shift in network design philosophy.

Early mobile core networks were conceived as

integrated systems where all functions resided

within single appliances or tightly coupled

clusters. This approach emerged from the

telecommunications industry's emphasis on

reliability and predictable performance, where

purpose-built hardware provided deterministic

behavior. However, as network traffic patterns

evolved and service requirements became more

dynamic, the limitations of monolithic designs

became increasingly apparent (Hersent, O. 2011).

Cloud-native architectures, pioneered in web-scale

environments, demonstrate that reliability and

agility are not mutually exclusive. The successful

application of cloud-native principles to other

critical infrastructure domains provides confidence

that telecommunications cores can undergo similar

transformation without compromising carrier-

grade requirements (Amogh, P. C. et al., 2017).

Limitations of Traditional SIP/IMS

Deployments

Traditional SIP/IMS appliance-based deployments

present multiple operational challenges that

impede service innovation and increase operational

costs. Hardware dependency creates lengthy

procurement cycles where capacity additions

require months of planning and significant capital

expenditure. Software updates in monolithic

systems necessitate comprehensive regression

testing across all functions, even when changes

affect only specific components. This coupling

results in extended maintenance windows that

impact service availability. Scaling challenges

emerge when traffic patterns require increased

capacity for specific functions while others remain

underutilized, leading to inefficient resource

allocation. Vendor lock-in further constrains

operators, as proprietary interfaces and custom

hardware platforms limit flexibility in technology

choices. These limitations collectively create an

environment where introducing new services or

908

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

adapting to changing market conditions becomes

prohibitively slow and expensive (Hersent, O.

2011). As illustrated in Table 1, the stark contrasts

between monolithic IMS and cloud-native

microservices architectures demonstrate

fundamental improvements across deployment

models, scaling capabilities, and operational

characteristics, with cloud-native approaches

enabling horizontal scaling, rolling updates, and

automated self-healing that traditional monolithic

system cannot achieve.

Table 1: Traditional Monolithic IMS vs. Cloud-Native Microservices Architecture (Amogh, P. C. et al., 2017;

Hersent, O. 2011)

Characteristic Monolithic IMS Cloud-Native Microservices

Deployment Unit Single appliance/VM per network element Multiple containers per function

Scaling Model Vertical scaling of entire element Horizontal scaling of specific services

Update Process Full system restart required Rolling updates without downtime

Resource Utilization Fixed allocation regardless of load Dynamic allocation based on demand

Failure Impact Complete element failure Isolated service failure

Development Cycle Quarterly/Annual releases Continuous delivery

Hardware Dependency Vendor-specific appliances Commodity infrastructure

Operational Model Manual intervention heavy Automated self-healing

Business Drivers for Transformation

The business case for microservices transformation

in telecommunications extends beyond technical

modernization to address fundamental market

dynamics. Competitive pressures demand service

velocity that matches over-the-top providers who

leverage cloud-native architectures for rapid

innovation. Cost optimization opportunities arise

from transitioning to commodity hardware and

pay-as-you-grow models enabled by containerized

deployments. Operational efficiency gains

manifest through automated deployment pipelines

and self-healing systems that reduce manual

intervention requirements (Amogh, P. C. et al.,

2017). Geographic distribution requirements for

edge computing and low-latency services

necessitate architectures that can be deployed

flexibly across diverse infrastructure footprints.

Regulatory compliance becomes more manageable

when specific functions can be isolated and

audited independently. These business drivers

collectively create compelling justification for the

substantial effort required to transform legacy

telecommunications infrastructure.

Decomposition Approach Overview

As illustrated in Figure 1, the decomposition

methodology presented in this article

systematically transforms monolithic IMS

elements into stateless microservices while

preserving carrier-grade performance

characteristics. The approach begins with

functional analysis of existing IMS components to

identify natural service boundaries based on data

cohesion and operational independence. State

externalization patterns ensure that individual

services can scale horizontally without

coordination overhead. API definition using

OpenAPI specifications creates clear contracts

between services, enabling independent

development and deployment cycles. Container

orchestration through Kubernetes provides the

foundation for dynamic resource management and

automated failure recovery. Service mesh

implementation adds sophisticated traffic

management capabilities including circuit

breaking, retry policies, and security enforcement

through mutual TLS. Event-driven integration

patterns decouple real-time call processing from

auxiliary functions such as billing and analytics,

ensuring that non-critical operations cannot impact

service availability (Hersent, O. 2011).

Article Organization and Contributions

This article provides a comprehensive framework

for transforming monolithic telecommunications

cores into cloud-native architectures. Section 2

details the architectural decomposition of SIP/IMS

functions, mapping traditional network elements to

microservices boundaries. Section 3 explores

service mesh patterns for managing inter-service

communication with telecom-grade resilience.

Section 4 presents event-driven architectures for

billing, analytics, and regulatory compliance

without impacting real-time performance. Section

5 addresses governance considerations including

3GPP standards compliance and DevSecOps

practices essential for maintaining service quality.

Section 6 concludes with lessons learned and

future research directions. The primary

contributions include a practical decomposition

methodology validated through implementation

experience, design patterns for maintaining carrier-

grade availability in containerized environments,

909

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

and a governance framework that balances agility

with regulatory compliance. These contributions

provide telecommunications operators with

actionable guidance for modernizing their

infrastructure while minimizing risk to existing

services.

ARCHITECTURAL DECOMPOSITION
OF SIP/IMS FUNCTIONS
The transformation of monolithic IMS

architectures into cloud-native microservices

requires systematic analysis of existing network

functions and careful planning of decomposition

boundaries. This section examines the traditional

IMS architecture, presents a comprehensive

decomposition strategy, and details the

Kubernetes-based orchestration approach that

enables carrier-grade reliability in containerized

environments.

Legacy Monolithic Architecture Analysis

Traditional IMS core networks consist of several

key network elements that collectively provide

multimedia services over IP networks. The Proxy

Call Session Control Function (P-CSCF) serves as

the initial contact point for user equipment,

handling SIP signaling and enforcing security

policies. The Interrogating Call Session Control

Function (I-CSCF) provides routing decisions and

hides network topology from external networks.

The Serving Call Session Control Function (S-

CSCF) acts as the central processing unit for

session control, managing user profiles and service

invocation. The Home Subscriber Server (HSS)

maintains user profiles, authentication credentials,

and service authorization data. These elements

traditionally deploy as monolithic applications

running on dedicated hardware appliances or

virtualized instances that encapsulate all

functionality within single deployable units

(Kazanavičius, J., & Mažeika, D. 2023).

The tight coupling inherent in monolithic IMS

implementations poses significant operational

challenges. Code dependencies between functions

mean that modifications to one component

potentially impact others, necessitating

comprehensive regression testing for even minor

updates. Database schemas shared across multiple

functions create upgrade complexities where

schema evolution must maintain backward

compatibility across all accessing components.

Resource allocation inefficiencies arise when

different functions experience varying load

patterns but share common infrastructure.

Performance bottlenecks in one function can

cascade throughout the system due to synchronous

communication patterns and shared resource pools.

These architectural constraints lead to lengthy

development cycles, extended maintenance

windows, and limited ability to innovate rapidly in

response to market demands (Douhara, R. et al.,

2020).

Microservices Decomposition Strategy

Figure 1: Transformation from Monolithic IMS Elements to Microservices Architecture (Kazanavičius, J., &

Mažeika, D. 2023; Douhara, R. et al., 2020)

Figure 1 provides a high-level view of how IMS

functions break into candidate microservices.

Identifying appropriate bounded contexts within

SIP/IMS functions forms the foundation of

910

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

successful decomposition. Domain-driven design

principles guide the identification of service

boundaries based on business capabilities rather

than technical implementation details. Registration

management forms a distinct bounded context,

responsible for user authentication, authorization,

and location tracking. Session control functions

decompose into separate services for call

origination, termination, and mid-session

modifications. Media control splits from signaling

to enable independent scaling based on traffic

patterns. Subscriber data management becomes a

dedicated service providing consistent interfaces

for profile access across all consuming services.

Each bounded context encapsulates its data model

and business logic, communicating with others

through well-defined APIs (Kazanavičius, J., &

Mažeika, D. 2023).

Stateless service design principles ensure

horizontal scalability and resilience in the

decomposed architecture. Services externalize

session state to distributed data stores, enabling

any instance to handle requests without affinity

requirements. Idempotent operation design allows

safe retry mechanisms without risk of duplicate

processing. Event sourcing patterns capture state

transitions as immutable events, facilitating audit

trails and enabling event replay for disaster

recovery. Circuit breaker patterns prevent cascade

failures by detecting downstream service issues

and failing fast with appropriate error responses.

Together, these principles deliver the elasticity and

fault tolerance required by cloud-native designs

while maintaining the consistency required by

telecommunications services (Douhara, R. et al.,

2020).

The separation of registration, policy, and dialog

management functions illustrates practical

decomposition patterns. Registration services

handle initial user authentication and periodic re-

registration, maintaining user location information

in distributed caches for rapid access. Policy

services evaluate service authorization rules and

enforce operator-defined constraints,

implementing a policy decision point that other

services consult for authorization decisions. Dialog

management services manage ongoing session

state, coordinating between originating and

terminating sides while maintaining transaction

integrity. Each service implements specific SIP

methods and responses, with clear ownership

boundaries preventing overlap and ensuring

maintainability. This separation enables

independent deployment cycles and allows

operators to scale specific functions based on

actual usage patterns rather than peak capacity

planning (Kazanavičius, J., & Mažeika, D. 2023).

Kubernetes-Based Orchestration

Container orchestration for telecommunications

workloads demands consideration of unique

requirements beyond typical web applications.

Real-time communication protocols require

predictable latency and minimal jitter,

necessitating careful pod scheduling and resource

allocation strategies. Session affinity requirements

for stateful protocols need intelligent load

balancing that maintains connection persistence

while enabling failover capabilities. High

availability demands multi-zone deployments with

automated failover mechanisms that detect and

remediate failures within stringent time

constraints. Kubernetes Quality of Service (QoS)

classes reserve CPU and memory resources,

ensuring critical services retain guaranteed

resources even during contention. Network

policies implement micro-segmentation for

security isolation while maintaining the low-

latency communication paths essential for real-

time services (Douhara, R. et al., 2020).

Service discovery and load balancing mechanisms

in Kubernetes environments require adaptation for

SIP/IMS workloads. DNS-based service discovery

provides location transparency, enabling services

to communicate using logical names rather than IP

addresses. Headless services enable direct pod-to-

pod communication for latency-sensitive

operations while maintaining registration with the

service registry, whereas user equipment-facing P-

CSCF instances continue to preserve NAT

traversal semantics. Custom load-balancing

algorithms make SIP-aware routing decisions

based on Call-ID to preserve dialog affinity.

Health checking mechanisms monitor both

container liveness and application-specific metrics

such as SIP response times and transaction success

rates. Service mesh integration adds sophisticated

traffic management capabilities including retry

policies, timeout configurations, and circuit

breaking at the network layer (Kazanavičius, J., &

Mažeika, D. 2023).

State externalization patterns ensure data

persistence and consistency across the distributed

microservices architecture. Distributed caching

solutions provide low-latency access to frequently

accessed data such as user profiles and routing

information. Event streaming platforms capture

state changes as ordered event sequences, enabling

both real-time processing and historical analysis.

911

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

Database-per-service patterns isolate data models

while change data capture mechanisms

synchronize shared reference data. Saga patterns

(long-running distributed transactions) coordinate

distributed transactions across multiple services,

maintaining consistency without distributed

locking. Backup and recovery strategies leverage

Kubernetes persistent volumes and snapshot

capabilities to ensure data durability. These

patterns collectively enable the stateless service

design essential for cloud-native architectures

while meeting the data consistency requirements

of telecommunications applications (Douhara, R.

et al., 2020).

SERVICE MESH IMPLEMENTATION
FOR CALL CONTROL
The implementation of service mesh technology

for telecommunications call control represents a

critical evolution in managing inter-service

communication within cloud-native IMS

architectures. This section explores how service

mesh patterns address the unique requirements of

SIP-based communications while providing the

observability, security, and traffic management

capabilities essential for carrier-grade

deployments.

Service Mesh Architecture

The sidecar proxy deployment model forms the

foundation of service mesh implementation in

telecommunications environments. Each

microservice instance deploys with an

accompanying proxy container that intercepts all

network traffic, creating a uniform communication

layer across the entire system. This architecture

enables consistent policy enforcement without

code changes, particularly valuable when

integrating legacy SIP components into a cloud-

native environment. The sidecar pattern provides

transparent interception of both inbound and

outbound connections, allowing implementation of

cross-cutting concerns such as authentication,

authorization, and telemetry collection. For SIP

workloads, the proxy configuration includes

protocol-aware features that understand SIP

message structure and can make routing decisions

based on SIP headers rather than solely on TCP/IP

information (Farkiani, B., & Jain, R. 2024).

The separation between data plane and control

plane components enables scalable and

maintainable service mesh deployments. The data

plane consists of the sidecar proxies that handle

actual traffic forwarding, implementing policies

defined by the control plane. These proxies

maintain minimal state, relying on the control

plane for configuration updates and policy

decisions. The control plane provides centralized

management interfaces for defining traffic

policies, security rules, and observability

configurations. This isolation allows operators to

update policies dynamically without restarting

services or disrupting active calls. For

telecommunications deployments, the control

plane implements specialized controllers that

understand SIP dialog state and can coordinate

policies across related proxies to maintain session

consistency. The architecture supports multi-

cluster deployments essential for geographic

distribution of IMS functions while maintaining

centralized policy management (Poikselkä, M., &

Mayer, G. 2013).

Fine-Grained Traffic Management

Circuit breaking patterns adapted for SIP

transactions prevent cascade failures while

maintaining session integrity. Traditional circuit

breakers designed for HTTP traffic require

modification to handle SIP's multi-message

transactions and long-lived dialogs. The

implementation monitors SIP response codes and

transaction completion rates rather than simple

request-response patterns. When detecting failures,

the circuit breaker transitions through closed,

open, and half-open states with configurable

thresholds specific to different SIP methods.

INVITE transactions receive different treatment

than MESSAGE or OPTIONS requests, reflecting

their varying impact on user experience. The

circuit breaker maintains awareness of SIP dialog

state, ensuring that mid-dialog requests continue

routing to the same destination even when new

dialog creation is suspended (Farkiani, B., & Jain,

R. 2024).

Retry and timeout policies must respect SIP's

inherent retransmission mechanisms and real-time

communication constraints. The service mesh retry

logic coordinates with SIP-layer retransmissions to

avoid duplicate message delivery that could cause

call setup failures or billing discrepancies. Timeout

values differentiate between various SIP methods,

with INVITE transactions allowing longer

durations than in-dialog requests. Exponential

backoff strategies prevent retransmission storms

while maintaining responsiveness for user-initiated

actions. The configuration supports deadline

propagation, ensuring that end-to-end transaction

timeouts are respected across multiple service

hops. Retry policies include SIP-specific

conditions such as distinguishing between

912

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

transport failures and SIP-level rejections,

enabling intelligent retry decisions based on

response codes (Poikselkä, M., & Mayer, G.

2013).

Load balancing strategies for call distribution

extend beyond simple round-robin or least-

connections algorithms to incorporate SIP-specific

requirements. Session affinity ensures that all

messages within a SIP dialog route to the same

service instance, maintaining transaction state and

reducing inter-service synchronization overhead.

The load balancer implements consistent hashing

based on Call-ID headers, providing deterministic

routing that survives proxy restarts. Weighted load

balancing accounts for heterogeneous service

instances with varying capacity, dynamically

adjusting weights based on response times and

error rates. Geographic proximity routing reduces

latency for real-time communications by preferring

local service instances while maintaining global

failover capabilities. Advanced strategies

incorporate SIP-specific metrics such as

concurrent dialog count and codec negotiation

success rates to optimize quality of service

(Farkiani, B., & Jain, R. 2024). Table 2

summarizes the comprehensive service mesh

traffic management policies optimized for different

SIP transaction types, demonstrating how timeout

configurations, retry policies, circuit breaker

thresholds, and load balancing strategies are

tailored to the specific requirements and criticality

of each SIP method, from long-duration INVITE

transactions to lightweight OPTIONS health

checks.

Table 2: Service Mesh Traffic Management Policies for SIP Transactions (Farkiani, B., & Jain, R. 2024)

SIP

Method

Timeout

Configuration

Retry Policy Circuit Breaker

Threshold

Load Balancing

INVITE Initial: 32s, In-

dialog: 4s

Exponential backoff,

max 3 retries

5 failures in 30s

window

Session affinity on

Call-ID

REGISTER 10s timeout Fixed interval, max 2

retries

10 failures in 60s

window

Round-robin

OPTIONS 2s timeout No retry 20 failures in 10s

window

Least connections

MESSAGE 5s timeout Linear backoff, max 2

retries

15 failures in 30s

window

Consistent hash

BYE 4s timeout Fixed interval, max 3

retries

5 failures in 30s

window

Session affinity

ACK 32s timeout No retry N/A Follow INVITE

routing

CANCEL 4s timeout Fixed interval, max 2

retries

5 failures in 30s

window

Follow INVITE

routing

Security Implementation

Mutual TLS implementation across call-control

hops establishes cryptographic identity verification

between all communicating services. Each service

presents a certificate during connection

establishment, with the service mesh proxy

handling certificate validation and enforcement.

The implementation supports certificate-based

authorization policies that restrict communication

based on service identity rather than network

location. Mutual TLS secures SIP signaling and

management APIs, while media streams (RTP

packets) are protected separately using SRTP with

DTLS for key exchange. The architecture

accommodates legacy components through TLS

termination at mesh boundaries, enabling gradual

migration while maintaining security posture.

Certificate attributes encode service roles and

permissions, enabling fine-grained access control

that aligns with telecommunications regulatory

requirements (Poikselkä, M., & Mayer, G. 2013).

Automated certificate management ensures

continuous security without operational overhead.

The service mesh integrates with certificate

authorities to automatically issue, distribute, and

rotate certificates for all services. Short-lived

certificates (typically 24-48 hours) reduce the

exposure window in case of compromise. The

rotation process implements make-before-break

semantics, ensuring new certificates are distributed

and validated before old ones expire. Certificate

revocation mechanisms respond rapidly to security

incidents, propagating revocation lists across the

mesh within seconds. For telecommunications

deployments, certificate management includes

integration with operator PKI systems and support

for regulatory audit requirements. The

implementation maintains certificate transparency

913

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

logs that enable forensic analysis and compliance

verification (Farkiani, B., & Jain, R. 2024).

Zero-trust security principles replace traditional

perimeter-based security models with continuous

verification. Every service-to-service

communication requires explicit authentication

and authorization, regardless of network location.

Policy enforcement points at each proxy evaluate

requests against centralized policy definitions that

specify allowed communication patterns. The

implementation denies all traffic by default,

requiring explicit policy definitions for permitted

flows. Microsegmentation isolates services at the

network layer, preventing lateral movement in case

of compromise. For IMS deployments, zero-trust

principles extend to external interfaces,

implementing strict validation of peering

relationships and roaming partners. Continuous

verification mechanisms monitor behavior patterns

and revoke access upon detecting anomalies,

providing defense-in-depth against both external

threats and insider risks (Poikselkä, M., & Mayer,

G. 2013).

EVENT-DRIVEN ARCHITECTURE
AND DATA MANAGEMENT
The implementation of event-driven architectures

in cloud-native IMS deployments enables efficient

handling of non-real-time functions while

maintaining separation from critical call-

processing paths. This section examines the design

of event streaming infrastructures that support

billing, analytics, and regulatory compliance

requirements without impacting the performance

of real-time communications.

Event Backbone Design

The selection of publish/subscribe streaming

platforms for telecommunications workloads

requires careful evaluation of durability, ordering

guarantees, and integration capabilities. Modern

streaming platforms such as Apache Kafka or

Apache Pulsar provide distributed architectures

that align with cloud-native principles while

offering the reliability expected in carrier

environments. The chosen platform must support

multi-datacenter replication for disaster recovery,

exactly-once delivery semantics for billing

accuracy, and partitioned topics that enable

parallel processing at scale. Integration

considerations include support for various

serialization formats (Avro, Protocol Buffers,

JSON), client libraries for multiple programming

languages, and compatibility with existing

telecommunications protocols. The platform

architecture implements topic hierarchies that

reflect the organizational structure of IMS events,

facilitating access control and data governance

(Wang, G. et al., 2015).

Event schema design for telecommunications

events establishes standardized representations that

accommodate the complexity of IMS operations

while enabling evolution over time. The schema

architecture adopts extensible formats that support

both mandatory fields required by standards and

operator-specific extensions. Call detail records

translate into structured events containing session

identifiers, participant information, timestamp

sequences, and quality metrics. Registration events

capture authentication attempts, location updates,

and service profile modifications. Media events

document codec negotiations, quality

degradations, and troubleshooting information.

Schema versioning strategies ensure backward

compatibility while allowing field additions for

new services. The design incorporates semantic

validation rules that detect malformed events at

ingestion time, preventing downstream processing

errors (Arteaga, C. H. T. et al., 2020).

Decoupling event streaming from the real-time call

path ensures that analytics and billing functions

cannot impact service availability. The architecture

implements asynchronous event emission where

IMS components publish events to local buffers

that forward to the streaming platform

independently of SIP transaction processing.

Circuit breaker patterns prevent backpressure from

slow consumers affecting event producers, with

configurable policies for handling buffer overflow

conditions. Event emission occurs at natural

transaction boundaries, capturing complete context

without introducing additional latency. The design

supports both push and pull models, allowing

components to choose appropriate integration

patterns based on their performance

characteristics. Monitoring mechanisms track

event pipeline health separately from call-

processing metrics, enabling independent

troubleshooting and capacity planning (Wang, G.

et al., 2015).

Data Collection Patterns

Billing record generation and distribution patterns

ensure accurate revenue collection while

accommodating diverse rating and charging

systems. The architecture captures billing-relevant

events at multiple points throughout call flow,

implementing correlation logic that assembles

complete charging records from distributed event

streams. Deduplication mechanisms handle

914

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

potential duplicate events from retried transactions

or failover scenarios. The distribution system

supports multiple downstream consumers

including online charging systems, offline

mediation platforms, and fraud detection engines.

Event enrichment adds contextual information

such as subscriber profiles and service attributes

needed for accurate rating. The implementation

maintains audit trails that track event lineage from

source systems through transformation and

delivery, supporting dispute resolution and

regulatory compliance (Arteaga, C. H. T. et al.,

2020).

Analytics data pipeline architectures transform raw

telecommunications events into actionable insights

for network optimization and service

improvement. The pipeline implements staged

processing where initial stages perform data

quality validation and normalization while later

stages execute complex aggregations and machine

learning models. Stream processing engines

calculate real-time metrics such as call success

rates and service availability, triggering alerts

when thresholds are exceeded. Batch processing

complements streaming analytics for historical

analysis and trend detection across longer time

windows. The architecture supports dimensional

modeling where events are enriched with reference

data to enable multidimensional analysis. Data

lake integration provides long-term storage for raw

events, enabling retrospective analysis with new

algorithms without requiring source system

changes (Wang, G. et al., 2015).

Lawful intercept implementation considerations

address regulatory requirements while maintaining

privacy and security for non-targeted

communications. The architecture implements

selective event replication based on court orders,

with cryptographic proof of compliance actions.

Access control mechanisms ensure that intercept

capabilities remain restricted to authorized

personnel with appropriate legal justification. The

design separates intercept functionality from

normal operations, preventing performance impact

on production traffic. Audit mechanisms maintain

tamper-evident logs of all intercept activities,

supporting legal proceedings and compliance

verification. The implementation accommodates

varying international requirements through

configurable policies that adapt to jurisdictional

differences. Privacy-preserving techniques

minimize data exposure by filtering events at the

source rather than collecting everything centrally

(Arteaga, C. H. T. et al., 2020).

Performance and Scalability

Event throughput requirements in

telecommunications environments demand

architectures capable of handling massive

transaction volumes during peak periods. The

streaming platform must accommodate burst

patterns corresponding to mass calling events

while maintaining consistent latency. Capacity

planning models account for event size variations

between simple transactions and complex multi-

party conferences. The architecture implements

horizontal scaling patterns where additional

processing nodes can be added dynamically based

on queue depths and processing latencies.

Performance optimization includes event batching

for efficient network utilization, compression for

reduced bandwidth consumption, and parallel

processing for CPU-intensive transformations.

Load testing frameworks simulate realistic

telecommunications traffic patterns to validate

performance under stress conditions (Wang, G. et

al., 2015).

Backpressure handling mechanisms prevent

system overload while ensuring critical events

receive priority processing. The implementation

uses adaptive flow control where producers reduce

event generation rates based on downstream

capacity signals. Priority queues segregate events

by importance, ensuring billing and regulatory

compliance events process even under congestion.

Spillover strategies temporarily persist excess

events to object storage when memory buffers

approach capacity. The architecture implements

graceful degradation where non-essential analytics

pause during overload conditions while

maintaining core functionality. Capacity

reservation mechanisms guarantee resources for

high-priority event streams, preventing starvation

from high-volume low-priority sources. Recovery

procedures automatically resume normal

operations when congestion clears, reprocessing

any events that were temporarily deferred

(Arteaga, C. H. T. et al., 2020).

Data retention and archival strategies balance

compliance requirements with storage costs while

maintaining query performance. The architecture

implements tiered storage where recent events

remain in high-performance systems while

historical data migrates to cost-effective object

storage. Retention policies vary by event type,

with billing records maintained for regulatory

periods (typically 7-10 years) while diagnostic

events expire more quickly (30-90 days).

Compression and columnar formats optimize

915

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

storage efficiency for archived data while

maintaining query capabilities. The

implementation supports regulatory holds that

prevent deletion of specific events under legal

preservation orders. Archival processes maintain

data lineage and provenance information, ensuring

archived events remain admissible for legal

proceedings. Restoration mechanisms enable rapid

retrieval of archived data when needed for

investigations or dispute resolution (Wang, G. et

al., 2015).

Governance and DevSecOps Implementation

The successful transformation of monolithic IMS

cores into cloud-native architectures requires

robust governance frameworks and modern

DevSecOps practices that maintain compliance

while enabling agility. This section examines how

telecommunications operators can implement

standards-compliant microservices while adopting

API-first development methodologies and

automated deployment strategies that minimize

service disruption.

3GPP Standards Compliance Mapping

Microservice to specification alignment ensures

that decomposed IMS functions continue to meet

stringent telecommunications standards while

benefiting from cloud-native architectures. Each

microservice maps to specific 3GPP technical

specifications, with clear documentation of which

interfaces and protocols each service implements.

The decomposition process preserves standard-

defined message flows and state machines,

ensuring interoperability with existing network

elements and roaming partners. Service boundaries

align with 3GPP reference points, facilitating clear

ownership and accountability for standards

compliance. The mapping documentation includes

traceability matrices that link service

implementations to specific specification clauses,

enabling efficient compliance audits and

certification processes. This systematic approach

ensures that architectural modernization does not

compromise conformance to industry standards

essential for global interoperability (Chatterjee, S.

2021).

Interface compliance verification implements

automated testing frameworks that validate

microservice behavior against 3GPP

specifications. Protocol conformance test suites

execute against service interfaces, verifying

message formats, parameter ranges, and state

transitions match standard requirements. Negative

testing scenarios ensure services handle error

conditions according to specifications, maintaining

robustness in adversarial conditions. The

verification framework includes performance

benchmarks that confirm services meet latency and

throughput requirements defined in standards.

Integration testing validates end-to-end scenarios

across multiple microservices, ensuring that

decomposition has not introduced behavioral

changes visible to external systems. Continuous

compliance monitoring detects drift from

specifications as services evolve, triggering alerts

when updates potentially impact standards

conformance (Poikselkä, M., & Mayer, G. 2013).

Regulatory requirement fulfillment extends

beyond technical standards to encompass lawful

intercept capabilities, emergency services support,

and data protection regulations. The governance

framework maps regulatory obligations to specific

microservices, ensuring comprehensive coverage

without unnecessary duplication. Audit trails

capture all configuration changes and access

patterns, supporting compliance demonstration

during regulatory reviews. Emergency call

handling receives special treatment with dedicated

service instances and priority routing to meet

availability requirements. Data residency controls

ensure subscriber information remains within

required geographic boundaries while enabling

global service delivery. The implementation

includes regulatory reporting interfaces that

generate required disclosures and statistics without

manual intervention, reducing compliance

overhead while improving accuracy (Chatterjee, S.

2021).

API-First Development Approach

OpenAPI 3.1 contracts serve as the single source

of truth for service interfaces, driving both

implementation and documentation. Each

microservice publishes its API contract as the

authoritative specification, with implementation

code generated from specifications rather than

specifications derived from code. Version

management strategies support both backward-

compatible minor updates and breaking changes

through major version increments. The contracts

include comprehensive examples and validation

rules that clarify expected behavior beyond basic

type definitions. Semantic versioning

communicates change impact clearly, allowing

consuming services to assess upgrade implications.

Contract repositories maintain historical versions,

enabling rollback capabilities and supporting

multiple versions simultaneously during transition

periods (Chatterjee, S. 2021).

916

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

Contract testing and validation ensures that service

implementations conform to their published APIs

while detecting breaking changes before

deployment. Consumer-driven contract tests

capture actual usage patterns from dependent

services, validating that providers meet real

requirements rather than theoretical specifications.

Mock service generation from OpenAPI

specifications enables parallel development where

teams can build against interfaces before

implementations exist. Contract validation occurs

at multiple stages including development-time

linting, build-time verification, and runtime

monitoring. Breaking change detection analyzes

differences between contract versions, flagging

incompatible modifications that would impact

consumers. The testing framework includes

performance contracts that specify response time

expectations, ensuring APIs meet latency

requirements for real-time communications

(Poikselkä, M., & Mayer, G. 2013).

API gateway patterns for external interfaces

provide consistent security, rate limiting, and

protocol translation at system boundaries. The

gateway architecture implements authentication

and authorization for external consumers, mapping

various credential types to internal service

identities. Rate limiting protects backend services

from overload while ensuring fair resource

allocation among consumers. Protocol translation

capabilities enable REST/JSON interfaces for

modern applications while maintaining

SIP/Diameter support for legacy integrations. The

gateway provides API versioning support through

URL routing or header-based selection, allowing

multiple versions to coexist. Analytics collection at

the gateway level enables usage tracking and

capacity planning without instrumenting individual

services. Circuit breaker integration prevents

cascade failures from propagating to external

consumers, maintaining system stability during

partial outages (Chatterjee, S. 2021).

Deployment and Operations

Blue-green deployment strategies minimize update

risk by maintaining parallel production

environments. The blue environment runs current

production workloads while green receives updates

and undergoes validation. Traffic routing occurs at

the service mesh level, enabling percentage-based

canary deployments before full cutover.

Automated smoke tests execute against the green

environment, verifying basic functionality before

accepting production traffic. Database migration

strategies ensure both environments can operate

against shared persistent stores during transition

periods. Rollback procedures require only traffic

rerouting, enabling rapid recovery from failed

deployments without lengthy restoration processes.

The architecture supports partial blue-green

deployments where individual services update

independently, reducing coordination complexity

(Chatterjee, S. 2021).

Configuration management separation

distinguishes between immutable service artifacts

and environment-specific settings, enabling

consistent deployments across multiple

environments. Container images embed

application code and dependencies while external

configuration provides environment-specific

parameters such as database connections and

service endpoints. Configuration validation occurs

before deployment, preventing invalid settings

from reaching production. Secret management

integrates with container orchestration platforms,

providing encrypted storage and controlled access

to sensitive credentials. The separation enables

identical images to deploy across development,

staging, and production environments, reducing

environment-specific defects. Hot reload

capabilities allow configuration updates without

service restarts for non-critical parameters,

minimizing disruption during operational

adjustments (Poikselkä, M., & Mayer, G. 2013).

Automated rollout gates and health checks ensure

deployments proceed only when services

demonstrate readiness for production traffic.

Progressive rollout strategies gradually increase

traffic to new versions while monitoring error rates

and performance metrics. Health check

implementations go beyond basic liveness probes

to validate functional readiness including database

connectivity and dependent service availability.

Automated rollback triggers activate when health

metrics exceed configured thresholds, preventing

widespread impact from defective deployments.

The gate framework includes business-hour

restrictions that prevent automated deployments

during peak traffic periods unless explicitly

overridden. Multi-stage pipelines implement

increasing validation rigor from development

through production, catching issues early while

maintaining deployment velocity (Chatterjee, S.

2021).

Maintenance window reduction techniques

leverage cloud-native capabilities to minimize or

eliminate service disruption during updates.

Rolling update strategies replace instances

gradually while maintaining minimum capacity for

917

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

uninterrupted service. Pod disruption budgets

ensure critical services maintain quorum during

node maintenance or cluster upgrades. Graceful

shutdown procedures allow in-flight transactions

to complete before instance termination,

preventing dropped calls during updates. The

architecture supports maintenance-mode operation

where services accept only health check traffic

while draining production workloads. Predictive

scaling anticipates capacity needs during

maintenance activities, preventing performance

degradation from reduced instance counts. These

techniques collectively enable continuous delivery

models where updates deploy during business

hours without customer impact, transforming

traditional maintenance windows into routine

operational activities (Poikselkä, M., & Mayer, G.

2013). Table 3 presents the comprehensive

DevSecOps automation framework across all

deployment stages, detailing the specific tools,

validation gates, rollback triggers, and target

metrics that ensure reliable and rapid deployments

while maintaining carrier-grade service quality

throughout the continuous delivery pipeline.

Table 3: DevSecOps Automation and Deployment Metrics (Chatterjee, S. 2021)

Deployment

Stage

Automation Tools Validation Gates Rollback

Triggers

Target Metrics

Build Container image

scanning, Dependency

checks

Security vulnerabilities,

License compliance

Build failures < 10 min build

time

Unit Testing Contract testing,

Mocking frameworks

Code coverage, API

compliance

Test failures > 80% coverage

Integration

Testing

Service mesh testing,

End-to-end scenarios

3GPP compliance,

Performance benchmarks

Response time

degradation

< 30 min test

suite

Staging

Deployment

Blue/green switching,

Canary analysis

Synthetic transaction

success, Resource

utilization

Error rate

increase

< 5 min

deployment

Production

Rollout

Progressive traffic

shifting, A/B testing

Real user metrics,

Business KPIs

SLA violations Zero-downtime

deployment

Post-

Deployment

Observability platforms,

Anomaly detection

Service health, Customer

impact

Automated

incident

detection

< 1 min

detection time

CONCLUSION
The transformation of monolithic SIP/IMS cores

into cloud-native microservices architectures

represents a fundamental shift in how

telecommunications operators design, deploy, and

maintain their critical voice and messaging

infrastructure. This architectural evolution

addresses the inherent limitations of traditional

appliance-based deployments by decomposing

tightly coupled functions into discrete,

independently scalable services orchestrated on

Kubernetes platforms. The implementation of

service mesh patterns provides sophisticated traffic

management and security capabilities essential for

carrier-grade communications, while event-driven

architectures enable efficient handling of billing,

analytics, and regulatory compliance without

impacting real-time call processing.

Through systematic application of DevSecOps

practices and API-first development principles,

operators can achieve continuous delivery

capabilities previously unavailable in

telecommunications environments. The

governance frameworks ensure that this

modernization maintains strict compliance with

3GPP standards and regulatory requirements while

enabling the operational agility demanded by

competitive markets. By embracing stateless

service design, automated deployment strategies,

and zero-trust security models,

telecommunications providers can significantly

reduce maintenance windows and operational

overhead while improving service reliability and

innovation velocity.

The architectural patterns and implementation

strategies presented in this article offer a practical

roadmap for operators seeking to modernize their

infrastructure without disrupting existing services.

The clear separation of concerns, comprehensive

monitoring capabilities, and automated operational

procedures enable telecommunications providers

to achieve the same level of agility as cloud-native

enterprises while maintaining the stringent

reliability requirements of carrier-grade services.

Future research directions include the integration

of artificial intelligence and machine learning for

918

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918

autonomous network operations, enabling self-

healing capabilities that further reduce operational

complexity. Edge computing integration presents

opportunities for ultra-low latency services by

deploying microservices closer to end users. The

evolution toward fully serverless architectures may

further simplify operations by eliminating

infrastructure management overhead. As 5G and

beyond networks continue to evolve, the cloud-

native principles established through IMS

transformation will provide the foundation for

next-generation telecommunications services.

REFERENCES
1. Amogh, P. C., Veeramachaneni, G.,

Rangisetti, A. K., Tamma, B. R., & Franklin,

A. A. "A cloud native solution for dynamic

auto scaling of MME in LTE." IEEE 28th

Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications

(PIMRC). IEEE, (2017).

2. Hersent, O. “IP telephony: deploying VoIP

protocols and IMS infrastructure.” John Wiley

& Sons, (2011).

3. Kazanavičius, J., & Mažeika, D. "An approach

to migrate from legacy monolithic application

into microservice architecture." 2023 IEEE

Open Conference of Electrical, Electronic and

Information Sciences (eStream). IEEE, (2023).

4. Douhara, R., Hsu, Y. F., Yoshihisa, T.,

Matsuda, K., & Matsuoka, M. "Kubernetes-

based workload allocation optimizer for

minimizing power consumption of computing

system with neural network." 2020

International Conference on Computational

Science and Computational Intelligence

(CSCI). IEEE, (2020).

5. Farkiani, B., & Jain, R. "Service Mesh:

Architectures, Applications, and

Implementations." arXiv preprint

arXiv:2405.13333 (2024).

6. Poikselkä, M., & Mayer, G. “IP multimedia

concepts and services.” John Wiley & Sons,

(2013).

7. Wang, G., Koshy, J., Subramanian, S.,

Paramasivam, K., Zadeh, M., Narkhede, N., ...

& Stein, J. "Building a replicated logging

system with Apache Kafka." Proceedings of

the VLDB Endowment 8.12 (2015): 1654-

1655.

8. Arteaga, C. H. T., Ordoñez, A., & Rendon, O.

M. C. "Scalability and performance analysis in

5G core network slicing." Ieee Access 8

(2020): 142086-142100.

9. Chatterjee, S. “Designing API-First Enterprise

Architectures on Azure.”Packt Publishing,

(2021).

Source of support: Nil; Conflict of interest: Nil.
Cite this article as:

Jaiswal, D. " Cloud-Native Transformation of SIP/IMS Core Networks: A Microservices Architecture for Next-

Generation Telecommunications." Sarcouncil Journal of Multidisciplinary 5.7 (2025): pp 907-918.

