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Abstract: Traditional mobile voice and messaging cores built on monolithic Session Initiation Protocol (SIP) and IP Multimedia 

Subsystem (IMS) appliances present significant challenges in terms of upgrade complexity, operational inflexibility, and 

maintenance overhead. This article presents a comprehensive architectural transformation that decomposes legacy IMS functions into 

logically stateless microservices. Session state is off-loaded to highly available, distributed data stores, while Kubernetes orchestrates 

the containers. The proposed architecture externalizes critical functions including registration management, policy enforcement, and 

dialog management into discrete services, enabling independent scaling and deployment. A service mesh layer provides fine-grained 

traffic management (circuit breaking and retries) and secures all call-control traffic with mutual TLS (mTLS); media streams are 
protected separately with Secure Real-time Transport Protocol (SRTP) using Datagram Transport Layer Security (DTLS) for key 

exchange. The architecture incorporates an event-driven backbone utilizing publish/subscribe streaming to capture billing records, 

analytics data, and lawful intercept information without impacting real-time call processing performance. Each microservice 
maintains strict alignment with relevant 3GPP specifications while embracing DevSecOps practices that treat OpenAPI contracts as 

primary development artifacts. By separating immutable container images from configuration data and using blue-green deployment 

with automated rollout gates, the architecture significantly reduces maintenance windows while maintaining carrier-grade reliability. 
The transformation enables telecommunications operators to achieve operational agility comparable to cloud-native enterprises while 

adhering to stringent regulatory requirements and zero-trust security principles, ultimately delivering enhanced service availability. 

Keywords: cloud-native telecommunications, IMS microservices, SIP decomposition, Kubernetes orchestration, service mesh. 

 

INTRODUCTION 
The telecommunications industry has witnessed a 

fundamental shift in how mobile voice and 

messaging core networks are designed and 

deployed. Traditional implementations relied 

heavily on purpose-built hardware appliances that 

integrated Session Initiation Protocol (SIP) and IP 

Multimedia Subsystem (IMS) functions into 

tightly coupled monolithic systems (Amogh, P. C. 

et al., 2017). These legacy architectures, while 

robust and field-proven, increasingly struggle to 

meet the agility demands of modern 

telecommunications services. The emergence of 

cloud-native principles offers a transformative 

approach to address these limitations through 

decomposition of monolithic cores into discrete, 

manageable microservices. 
 

Evolution from Monolithic to Cloud-Native 

Architectures 

The journey from monolithic to cloud-native 

architectures in telecommunications represents a 

paradigm shift in network design philosophy. 

Early mobile core networks were conceived as 

integrated systems where all functions resided 

within single appliances or tightly coupled 

clusters. This approach emerged from the 

telecommunications industry's emphasis on 

reliability and predictable performance, where 

purpose-built hardware provided deterministic 

behavior. However, as network traffic patterns 

evolved and service requirements became more 

dynamic, the limitations of monolithic designs 

became increasingly apparent (Hersent, O. 2011). 

Cloud-native architectures, pioneered in web-scale 

environments, demonstrate that reliability and 

agility are not mutually exclusive. The successful 

application of cloud-native principles to other 

critical infrastructure domains provides confidence 

that telecommunications cores can undergo similar 

transformation without compromising carrier-

grade requirements (Amogh, P. C. et al., 2017). 
 

Limitations of Traditional SIP/IMS 

Deployments 

Traditional SIP/IMS appliance-based deployments 

present multiple operational challenges that 

impede service innovation and increase operational 

costs. Hardware dependency creates lengthy 

procurement cycles where capacity additions 

require months of planning and significant capital 

expenditure. Software updates in monolithic 

systems necessitate comprehensive regression 

testing across all functions, even when changes 

affect only specific components. This coupling 

results in extended maintenance windows that 

impact service availability. Scaling challenges 

emerge when traffic patterns require increased 

capacity for specific functions while others remain 

underutilized, leading to inefficient resource 

allocation. Vendor lock-in further constrains 

operators, as proprietary interfaces and custom 

hardware platforms limit flexibility in technology 

choices. These limitations collectively create an 

environment where introducing new services or 
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adapting to changing market conditions becomes 

prohibitively slow and expensive (Hersent, O. 

2011). As illustrated in Table 1, the stark contrasts 

between monolithic IMS and cloud-native 

microservices architectures demonstrate 

fundamental improvements across deployment 

models, scaling capabilities, and operational 

characteristics, with cloud-native approaches 

enabling horizontal scaling, rolling updates, and 

automated self-healing that traditional monolithic 

system cannot achieve. 

 

Table 1: Traditional Monolithic IMS vs. Cloud-Native Microservices Architecture (Amogh, P. C. et al., 2017; 

Hersent, O. 2011) 

Characteristic Monolithic IMS Cloud-Native Microservices 

Deployment Unit Single appliance/VM per network element Multiple containers per function 

Scaling Model Vertical scaling of entire element Horizontal scaling of specific services 

Update Process Full system restart required Rolling updates without downtime 

Resource Utilization Fixed allocation regardless of load Dynamic allocation based on demand 

Failure Impact Complete element failure Isolated service failure 

Development Cycle Quarterly/Annual releases Continuous delivery 

Hardware Dependency Vendor-specific appliances Commodity infrastructure 

Operational Model Manual intervention heavy Automated self-healing 
 

Business Drivers for Transformation 

The business case for microservices transformation 

in telecommunications extends beyond technical 

modernization to address fundamental market 

dynamics. Competitive pressures demand service 

velocity that matches over-the-top providers who 

leverage cloud-native architectures for rapid 

innovation. Cost optimization opportunities arise 

from transitioning to commodity hardware and 

pay-as-you-grow models enabled by containerized 

deployments. Operational efficiency gains 

manifest through automated deployment pipelines 

and self-healing systems that reduce manual 

intervention requirements (Amogh, P. C. et al., 

2017). Geographic distribution requirements for 

edge computing and low-latency services 

necessitate architectures that can be deployed 

flexibly across diverse infrastructure footprints. 

Regulatory compliance becomes more manageable 

when specific functions can be isolated and 

audited independently. These business drivers 

collectively create compelling justification for the 

substantial effort required to transform legacy 

telecommunications infrastructure. 
 

Decomposition Approach Overview 

As illustrated in Figure 1, the decomposition 

methodology presented in this article 

systematically transforms monolithic IMS 

elements into stateless microservices while 

preserving carrier-grade performance 

characteristics. The approach begins with 

functional analysis of existing IMS components to 

identify natural service boundaries based on data 

cohesion and operational independence. State 

externalization patterns ensure that individual 

services can scale horizontally without 

coordination overhead. API definition using 

OpenAPI specifications creates clear contracts 

between services, enabling independent 

development and deployment cycles. Container 

orchestration through Kubernetes provides the 

foundation for dynamic resource management and 

automated failure recovery. Service mesh 

implementation adds sophisticated traffic 

management capabilities including circuit 

breaking, retry policies, and security enforcement 

through mutual TLS. Event-driven integration 

patterns decouple real-time call processing from 

auxiliary functions such as billing and analytics, 

ensuring that non-critical operations cannot impact 

service availability (Hersent, O. 2011). 
 

Article Organization and Contributions 

This article provides a comprehensive framework 

for transforming monolithic telecommunications 

cores into cloud-native architectures. Section 2 

details the architectural decomposition of SIP/IMS 

functions, mapping traditional network elements to 

microservices boundaries. Section 3 explores 

service mesh patterns for managing inter-service 

communication with telecom-grade resilience. 

Section 4 presents event-driven architectures for 

billing, analytics, and regulatory compliance 

without impacting real-time performance. Section 

5 addresses governance considerations including 

3GPP standards compliance and DevSecOps 

practices essential for maintaining service quality. 

Section 6 concludes with lessons learned and 

future research directions. The primary 

contributions include a practical decomposition 

methodology validated through implementation 

experience, design patterns for maintaining carrier-

grade availability in containerized environments, 
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and a governance framework that balances agility 

with regulatory compliance. These contributions 

provide telecommunications operators with 

actionable guidance for modernizing their 

infrastructure while minimizing risk to existing 

services. 
 

ARCHITECTURAL DECOMPOSITION 
OF SIP/IMS FUNCTIONS 
The transformation of monolithic IMS 

architectures into cloud-native microservices 

requires systematic analysis of existing network 

functions and careful planning of decomposition 

boundaries. This section examines the traditional 

IMS architecture, presents a comprehensive 

decomposition strategy, and details the 

Kubernetes-based orchestration approach that 

enables carrier-grade reliability in containerized 

environments. 
 

Legacy Monolithic Architecture Analysis 

Traditional IMS core networks consist of several 

key network elements that collectively provide 

multimedia services over IP networks. The Proxy 

Call Session Control Function (P-CSCF) serves as 

the initial contact point for user equipment, 

handling SIP signaling and enforcing security 

policies. The Interrogating Call Session Control 

Function (I-CSCF) provides routing decisions and 

hides network topology from external networks. 

The Serving Call Session Control Function (S-

CSCF) acts as the central processing unit for 

session control, managing user profiles and service 

invocation. The Home Subscriber Server (HSS) 

maintains user profiles, authentication credentials, 

and service authorization data. These elements 

traditionally deploy as monolithic applications 

running on dedicated hardware appliances or 

virtualized instances that encapsulate all 

functionality within single deployable units 

(Kazanavičius, J., & Mažeika, D. 2023). 
 

The tight coupling inherent in monolithic IMS 

implementations poses significant operational 

challenges. Code dependencies between functions 

mean that modifications to one component 

potentially impact others, necessitating 

comprehensive regression testing for even minor 

updates. Database schemas shared across multiple 

functions create upgrade complexities where 

schema evolution must maintain backward 

compatibility across all accessing components. 

Resource allocation inefficiencies arise when 

different functions experience varying load 

patterns but share common infrastructure. 

Performance bottlenecks in one function can 

cascade throughout the system due to synchronous 

communication patterns and shared resource pools. 

These architectural constraints lead to lengthy 

development cycles, extended maintenance 

windows, and limited ability to innovate rapidly in 

response to market demands (Douhara, R. et al., 

2020). 
 

Microservices Decomposition Strategy 

 

 
Figure 1: Transformation from Monolithic IMS Elements to Microservices Architecture (Kazanavičius, J., & 

Mažeika, D. 2023; Douhara, R. et al., 2020) 
 

Figure 1 provides a high-level view of how IMS 

functions break into candidate microservices. 

Identifying appropriate bounded contexts within 

SIP/IMS functions forms the foundation of 
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successful decomposition. Domain-driven design 

principles guide the identification of service 

boundaries based on business capabilities rather 

than technical implementation details. Registration 

management forms a distinct bounded context, 

responsible for user authentication, authorization, 

and location tracking. Session control functions 

decompose into separate services for call 

origination, termination, and mid-session 

modifications. Media control splits from signaling 

to enable independent scaling based on traffic 

patterns. Subscriber data management becomes a 

dedicated service providing consistent interfaces 

for profile access across all consuming services. 

Each bounded context encapsulates its data model 

and business logic, communicating with others 

through well-defined APIs (Kazanavičius, J., & 

Mažeika, D. 2023). 
 

Stateless service design principles ensure 

horizontal scalability and resilience in the 

decomposed architecture. Services externalize 

session state to distributed data stores, enabling 

any instance to handle requests without affinity 

requirements. Idempotent operation design allows 

safe retry mechanisms without risk of duplicate 

processing. Event sourcing patterns capture state 

transitions as immutable events, facilitating audit 

trails and enabling event replay for disaster 

recovery. Circuit breaker patterns prevent cascade 

failures by detecting downstream service issues 

and failing fast with appropriate error responses. 

Together, these principles deliver the elasticity and 

fault tolerance required by cloud-native designs 

while maintaining the consistency required by 

telecommunications services (Douhara, R. et al., 

2020). 
 

The separation of registration, policy, and dialog 

management functions illustrates practical 

decomposition patterns. Registration services 

handle initial user authentication and periodic re-

registration, maintaining user location information 

in distributed caches for rapid access. Policy 

services evaluate service authorization rules and 

enforce operator-defined constraints, 

implementing a policy decision point that other 

services consult for authorization decisions. Dialog 

management services manage ongoing session 

state, coordinating between originating and 

terminating sides while maintaining transaction 

integrity. Each service implements specific SIP 

methods and responses, with clear ownership 

boundaries preventing overlap and ensuring 

maintainability. This separation enables 

independent deployment cycles and allows 

operators to scale specific functions based on 

actual usage patterns rather than peak capacity 

planning (Kazanavičius, J., & Mažeika, D. 2023). 
 

Kubernetes-Based Orchestration  

Container orchestration for telecommunications 

workloads demands consideration of unique 

requirements beyond typical web applications. 

Real-time communication protocols require 

predictable latency and minimal jitter, 

necessitating careful pod scheduling and resource 

allocation strategies. Session affinity requirements 

for stateful protocols need intelligent load 

balancing that maintains connection persistence 

while enabling failover capabilities. High 

availability demands multi-zone deployments with 

automated failover mechanisms that detect and 

remediate failures within stringent time 

constraints. Kubernetes Quality of Service (QoS) 

classes reserve CPU and memory resources, 

ensuring critical services retain guaranteed 

resources even during contention. Network 

policies implement micro-segmentation for 

security isolation while maintaining the low-

latency communication paths essential for real-

time services (Douhara, R. et al., 2020). 
 

Service discovery and load balancing mechanisms 

in Kubernetes environments require adaptation for 

SIP/IMS workloads. DNS-based service discovery 

provides location transparency, enabling services 

to communicate using logical names rather than IP 

addresses. Headless services enable direct pod-to-

pod communication for latency-sensitive 

operations while maintaining registration with the 

service registry, whereas user equipment-facing P-

CSCF instances continue to preserve NAT 

traversal semantics. Custom load-balancing 

algorithms make SIP-aware routing decisions 

based on Call-ID to preserve dialog affinity. 

Health checking mechanisms monitor both 

container liveness and application-specific metrics 

such as SIP response times and transaction success 

rates. Service mesh integration adds sophisticated 

traffic management capabilities including retry 

policies, timeout configurations, and circuit 

breaking at the network layer (Kazanavičius, J., & 

Mažeika, D. 2023). 
 

State externalization patterns ensure data 

persistence and consistency across the distributed 

microservices architecture. Distributed caching 

solutions provide low-latency access to frequently 

accessed data such as user profiles and routing 

information. Event streaming platforms capture 

state changes as ordered event sequences, enabling 

both real-time processing and historical analysis. 
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Database-per-service patterns isolate data models 

while change data capture mechanisms 

synchronize shared reference data. Saga patterns 

(long-running distributed transactions) coordinate 

distributed transactions across multiple services, 

maintaining consistency without distributed 

locking. Backup and recovery strategies leverage 

Kubernetes persistent volumes and snapshot 

capabilities to ensure data durability. These 

patterns collectively enable the stateless service 

design essential for cloud-native architectures 

while meeting the data consistency requirements 

of telecommunications applications (Douhara, R. 

et al., 2020). 
 

SERVICE MESH IMPLEMENTATION 
FOR CALL CONTROL 
The implementation of service mesh technology 

for telecommunications call control represents a 

critical evolution in managing inter-service 

communication within cloud-native IMS 

architectures. This section explores how service 

mesh patterns address the unique requirements of 

SIP-based communications while providing the 

observability, security, and traffic management 

capabilities essential for carrier-grade 

deployments. 
 

Service Mesh Architecture 

The sidecar proxy deployment model forms the 

foundation of service mesh implementation in 

telecommunications environments. Each 

microservice instance deploys with an 

accompanying proxy container that intercepts all 

network traffic, creating a uniform communication 

layer across the entire system. This architecture 

enables consistent policy enforcement without 

code changes, particularly valuable when 

integrating legacy SIP components into a cloud-

native environment. The sidecar pattern provides 

transparent interception of both inbound and 

outbound connections, allowing implementation of 

cross-cutting concerns such as authentication, 

authorization, and telemetry collection. For SIP 

workloads, the proxy configuration includes 

protocol-aware features that understand SIP 

message structure and can make routing decisions 

based on SIP headers rather than solely on TCP/IP 

information (Farkiani, B., & Jain, R. 2024). 
 

The separation between data plane and control 

plane components enables scalable and 

maintainable service mesh deployments. The data 

plane consists of the sidecar proxies that handle 

actual traffic forwarding, implementing policies 

defined by the control plane. These proxies 

maintain minimal state, relying on the control 

plane for configuration updates and policy 

decisions. The control plane provides centralized 

management interfaces for defining traffic 

policies, security rules, and observability 

configurations. This isolation allows operators to 

update policies dynamically without restarting 

services or disrupting active calls. For 

telecommunications deployments, the control 

plane implements specialized controllers that 

understand SIP dialog state and can coordinate 

policies across related proxies to maintain session 

consistency. The architecture supports multi-

cluster deployments essential for geographic 

distribution of IMS functions while maintaining 

centralized policy management (Poikselkä, M., & 

Mayer, G. 2013). 
 

Fine-Grained Traffic Management 

Circuit breaking patterns adapted for SIP 

transactions prevent cascade failures while 

maintaining session integrity. Traditional circuit 

breakers designed for HTTP traffic require 

modification to handle SIP's multi-message 

transactions and long-lived dialogs. The 

implementation monitors SIP response codes and 

transaction completion rates rather than simple 

request-response patterns. When detecting failures, 

the circuit breaker transitions through closed, 

open, and half-open states with configurable 

thresholds specific to different SIP methods. 

INVITE transactions receive different treatment 

than MESSAGE or OPTIONS requests, reflecting 

their varying impact on user experience. The 

circuit breaker maintains awareness of SIP dialog 

state, ensuring that mid-dialog requests continue 

routing to the same destination even when new 

dialog creation is suspended (Farkiani, B., & Jain, 

R. 2024). 
 

Retry and timeout policies must respect SIP's 

inherent retransmission mechanisms and real-time 

communication constraints. The service mesh retry 

logic coordinates with SIP-layer retransmissions to 

avoid duplicate message delivery that could cause 

call setup failures or billing discrepancies. Timeout 

values differentiate between various SIP methods, 

with INVITE transactions allowing longer 

durations than in-dialog requests. Exponential 

backoff strategies prevent retransmission storms 

while maintaining responsiveness for user-initiated 

actions. The configuration supports deadline 

propagation, ensuring that end-to-end transaction 

timeouts are respected across multiple service 

hops. Retry policies include SIP-specific 

conditions such as distinguishing between 
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transport failures and SIP-level rejections, 

enabling intelligent retry decisions based on 

response codes (Poikselkä, M., & Mayer, G. 

2013). 
 

Load balancing strategies for call distribution 

extend beyond simple round-robin or least-

connections algorithms to incorporate SIP-specific 

requirements. Session affinity ensures that all 

messages within a SIP dialog route to the same 

service instance, maintaining transaction state and 

reducing inter-service synchronization overhead. 

The load balancer implements consistent hashing 

based on Call-ID headers, providing deterministic 

routing that survives proxy restarts. Weighted load 

balancing accounts for heterogeneous service 

instances with varying capacity, dynamically 

adjusting weights based on response times and 

error rates. Geographic proximity routing reduces 

latency for real-time communications by preferring 

local service instances while maintaining global 

failover capabilities. Advanced strategies 

incorporate SIP-specific metrics such as 

concurrent dialog count and codec negotiation 

success rates to optimize quality of service 

(Farkiani, B., & Jain, R. 2024). Table 2 

summarizes the comprehensive service mesh 

traffic management policies optimized for different 

SIP transaction types, demonstrating how timeout 

configurations, retry policies, circuit breaker 

thresholds, and load balancing strategies are 

tailored to the specific requirements and criticality 

of each SIP method, from long-duration INVITE 

transactions to lightweight OPTIONS health 

checks. 

 

Table 2: Service Mesh Traffic Management Policies for SIP Transactions (Farkiani, B., & Jain, R. 2024) 

SIP 

Method 

Timeout 

Configuration 

Retry Policy Circuit Breaker 

Threshold 

Load Balancing 

INVITE Initial: 32s, In-

dialog: 4s 

Exponential backoff, 

max 3 retries 

5 failures in 30s 

window 

Session affinity on 

Call-ID 

REGISTER 10s timeout Fixed interval, max 2 

retries 

10 failures in 60s 

window 

Round-robin 

OPTIONS 2s timeout No retry 20 failures in 10s 

window 

Least connections 

MESSAGE 5s timeout Linear backoff, max 2 

retries 

15 failures in 30s 

window 

Consistent hash 

BYE 4s timeout Fixed interval, max 3 

retries 

5 failures in 30s 

window 

Session affinity 

ACK 32s timeout No retry N/A Follow INVITE 

routing 

CANCEL 4s timeout Fixed interval, max 2 

retries 

5 failures in 30s 

window 

Follow INVITE 

routing 
 

Security Implementation 

Mutual TLS implementation across call-control 

hops establishes cryptographic identity verification 

between all communicating services. Each service 

presents a certificate during connection 

establishment, with the service mesh proxy 

handling certificate validation and enforcement. 

The implementation supports certificate-based 

authorization policies that restrict communication 

based on service identity rather than network 

location. Mutual TLS secures SIP signaling and 

management APIs, while media streams (RTP 

packets) are protected separately using SRTP with 

DTLS for key exchange. The architecture 

accommodates legacy components through TLS 

termination at mesh boundaries, enabling gradual 

migration while maintaining security posture. 

Certificate attributes encode service roles and 

permissions, enabling fine-grained access control 

that aligns with telecommunications regulatory 

requirements (Poikselkä, M., & Mayer, G. 2013). 
 

Automated certificate management ensures 

continuous security without operational overhead. 

The service mesh integrates with certificate 

authorities to automatically issue, distribute, and 

rotate certificates for all services. Short-lived 

certificates (typically 24-48 hours) reduce the 

exposure window in case of compromise. The 

rotation process implements make-before-break 

semantics, ensuring new certificates are distributed 

and validated before old ones expire. Certificate 

revocation mechanisms respond rapidly to security 

incidents, propagating revocation lists across the 

mesh within seconds. For telecommunications 

deployments, certificate management includes 

integration with operator PKI systems and support 

for regulatory audit requirements. The 

implementation maintains certificate transparency 
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logs that enable forensic analysis and compliance 

verification (Farkiani, B., & Jain, R. 2024). 
 

Zero-trust security principles replace traditional 

perimeter-based security models with continuous 

verification. Every service-to-service 

communication requires explicit authentication 

and authorization, regardless of network location. 

Policy enforcement points at each proxy evaluate 

requests against centralized policy definitions that 

specify allowed communication patterns. The 

implementation denies all traffic by default, 

requiring explicit policy definitions for permitted 

flows. Microsegmentation isolates services at the 

network layer, preventing lateral movement in case 

of compromise. For IMS deployments, zero-trust 

principles extend to external interfaces, 

implementing strict validation of peering 

relationships and roaming partners. Continuous 

verification mechanisms monitor behavior patterns 

and revoke access upon detecting anomalies, 

providing defense-in-depth against both external 

threats and insider risks (Poikselkä, M., & Mayer, 

G. 2013). 
 

EVENT-DRIVEN ARCHITECTURE 
AND DATA MANAGEMENT 
The implementation of event-driven architectures 

in cloud-native IMS deployments enables efficient 

handling of non-real-time functions while 

maintaining separation from critical call-

processing paths. This section examines the design 

of event streaming infrastructures that support 

billing, analytics, and regulatory compliance 

requirements without impacting the performance 

of real-time communications. 
 

Event Backbone Design 

The selection of publish/subscribe streaming 

platforms for telecommunications workloads 

requires careful evaluation of durability, ordering 

guarantees, and integration capabilities. Modern 

streaming platforms such as Apache Kafka or 

Apache Pulsar provide distributed architectures 

that align with cloud-native principles while 

offering the reliability expected in carrier 

environments. The chosen platform must support 

multi-datacenter replication for disaster recovery, 

exactly-once delivery semantics for billing 

accuracy, and partitioned topics that enable 

parallel processing at scale. Integration 

considerations include support for various 

serialization formats (Avro, Protocol Buffers, 

JSON), client libraries for multiple programming 

languages, and compatibility with existing 

telecommunications protocols. The platform 

architecture implements topic hierarchies that 

reflect the organizational structure of IMS events, 

facilitating access control and data governance 

(Wang, G. et al., 2015). 
 

Event schema design for telecommunications 

events establishes standardized representations that 

accommodate the complexity of IMS operations 

while enabling evolution over time. The schema 

architecture adopts extensible formats that support 

both mandatory fields required by standards and 

operator-specific extensions. Call detail records 

translate into structured events containing session 

identifiers, participant information, timestamp 

sequences, and quality metrics. Registration events 

capture authentication attempts, location updates, 

and service profile modifications. Media events 

document codec negotiations, quality 

degradations, and troubleshooting information. 

Schema versioning strategies ensure backward 

compatibility while allowing field additions for 

new services. The design incorporates semantic 

validation rules that detect malformed events at 

ingestion time, preventing downstream processing 

errors (Arteaga, C. H. T. et al., 2020). 
 

Decoupling event streaming from the real-time call 

path ensures that analytics and billing functions 

cannot impact service availability. The architecture 

implements asynchronous event emission where 

IMS components publish events to local buffers 

that forward to the streaming platform 

independently of SIP transaction processing. 

Circuit breaker patterns prevent backpressure from 

slow consumers affecting event producers, with 

configurable policies for handling buffer overflow 

conditions. Event emission occurs at natural 

transaction boundaries, capturing complete context 

without introducing additional latency. The design 

supports both push and pull models, allowing 

components to choose appropriate integration 

patterns based on their performance 

characteristics. Monitoring mechanisms track 

event pipeline health separately from call-

processing metrics, enabling independent 

troubleshooting and capacity planning (Wang, G. 

et al., 2015). 
 

Data Collection Patterns 

Billing record generation and distribution patterns 

ensure accurate revenue collection while 

accommodating diverse rating and charging 

systems. The architecture captures billing-relevant 

events at multiple points throughout call flow, 

implementing correlation logic that assembles 

complete charging records from distributed event 

streams. Deduplication mechanisms handle 



 
 

914 
 

Copyright © 2021 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 
(CC BY-NC-ND 4.0) International License 

Publisher: SARC Publisher 

Jaiswal, D. Sarc. Jr. Md. vol-5, issue-7 (2025) pp-907-918 

potential duplicate events from retried transactions 

or failover scenarios. The distribution system 

supports multiple downstream consumers 

including online charging systems, offline 

mediation platforms, and fraud detection engines. 

Event enrichment adds contextual information 

such as subscriber profiles and service attributes 

needed for accurate rating. The implementation 

maintains audit trails that track event lineage from 

source systems through transformation and 

delivery, supporting dispute resolution and 

regulatory compliance (Arteaga, C. H. T. et al., 

2020). 
 

Analytics data pipeline architectures transform raw 

telecommunications events into actionable insights 

for network optimization and service 

improvement. The pipeline implements staged 

processing where initial stages perform data 

quality validation and normalization while later 

stages execute complex aggregations and machine 

learning models. Stream processing engines 

calculate real-time metrics such as call success 

rates and service availability, triggering alerts 

when thresholds are exceeded. Batch processing 

complements streaming analytics for historical 

analysis and trend detection across longer time 

windows. The architecture supports dimensional 

modeling where events are enriched with reference 

data to enable multidimensional analysis. Data 

lake integration provides long-term storage for raw 

events, enabling retrospective analysis with new 

algorithms without requiring source system 

changes (Wang, G. et al., 2015). 
 

Lawful intercept implementation considerations 

address regulatory requirements while maintaining 

privacy and security for non-targeted 

communications. The architecture implements 

selective event replication based on court orders, 

with cryptographic proof of compliance actions. 

Access control mechanisms ensure that intercept 

capabilities remain restricted to authorized 

personnel with appropriate legal justification. The 

design separates intercept functionality from 

normal operations, preventing performance impact 

on production traffic. Audit mechanisms maintain 

tamper-evident logs of all intercept activities, 

supporting legal proceedings and compliance 

verification. The implementation accommodates 

varying international requirements through 

configurable policies that adapt to jurisdictional 

differences. Privacy-preserving techniques 

minimize data exposure by filtering events at the 

source rather than collecting everything centrally 

(Arteaga, C. H. T. et al., 2020). 
 

Performance and Scalability 

Event throughput requirements in 

telecommunications environments demand 

architectures capable of handling massive 

transaction volumes during peak periods. The 

streaming platform must accommodate burst 

patterns corresponding to mass calling events 

while maintaining consistent latency. Capacity 

planning models account for event size variations 

between simple transactions and complex multi-

party conferences. The architecture implements 

horizontal scaling patterns where additional 

processing nodes can be added dynamically based 

on queue depths and processing latencies. 

Performance optimization includes event batching 

for efficient network utilization, compression for 

reduced bandwidth consumption, and parallel 

processing for CPU-intensive transformations. 

Load testing frameworks simulate realistic 

telecommunications traffic patterns to validate 

performance under stress conditions (Wang, G. et 

al., 2015). 
 

Backpressure handling mechanisms prevent 

system overload while ensuring critical events 

receive priority processing. The implementation 

uses adaptive flow control where producers reduce 

event generation rates based on downstream 

capacity signals. Priority queues segregate events 

by importance, ensuring billing and regulatory 

compliance events process even under congestion. 

Spillover strategies temporarily persist excess 

events to object storage when memory buffers 

approach capacity. The architecture implements 

graceful degradation where non-essential analytics 

pause during overload conditions while 

maintaining core functionality. Capacity 

reservation mechanisms guarantee resources for 

high-priority event streams, preventing starvation 

from high-volume low-priority sources. Recovery 

procedures automatically resume normal 

operations when congestion clears, reprocessing 

any events that were temporarily deferred 

(Arteaga, C. H. T. et al., 2020). 
 

Data retention and archival strategies balance 

compliance requirements with storage costs while 

maintaining query performance. The architecture 

implements tiered storage where recent events 

remain in high-performance systems while 

historical data migrates to cost-effective object 

storage. Retention policies vary by event type, 

with billing records maintained for regulatory 

periods (typically 7-10 years) while diagnostic 

events expire more quickly (30-90 days). 

Compression and columnar formats optimize 
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storage efficiency for archived data while 

maintaining query capabilities. The 

implementation supports regulatory holds that 

prevent deletion of specific events under legal 

preservation orders. Archival processes maintain 

data lineage and provenance information, ensuring 

archived events remain admissible for legal 

proceedings. Restoration mechanisms enable rapid 

retrieval of archived data when needed for 

investigations or dispute resolution (Wang, G. et 

al., 2015). 
 

Governance and DevSecOps Implementation 

The successful transformation of monolithic IMS 

cores into cloud-native architectures requires 

robust governance frameworks and modern 

DevSecOps practices that maintain compliance 

while enabling agility. This section examines how 

telecommunications operators can implement 

standards-compliant microservices while adopting 

API-first development methodologies and 

automated deployment strategies that minimize 

service disruption. 
 

3GPP Standards Compliance Mapping 

Microservice to specification alignment ensures 

that decomposed IMS functions continue to meet 

stringent telecommunications standards while 

benefiting from cloud-native architectures. Each 

microservice maps to specific 3GPP technical 

specifications, with clear documentation of which 

interfaces and protocols each service implements. 

The decomposition process preserves standard-

defined message flows and state machines, 

ensuring interoperability with existing network 

elements and roaming partners. Service boundaries 

align with 3GPP reference points, facilitating clear 

ownership and accountability for standards 

compliance. The mapping documentation includes 

traceability matrices that link service 

implementations to specific specification clauses, 

enabling efficient compliance audits and 

certification processes. This systematic approach 

ensures that architectural modernization does not 

compromise conformance to industry standards 

essential for global interoperability (Chatterjee, S. 

2021). 
 

Interface compliance verification implements 

automated testing frameworks that validate 

microservice behavior against 3GPP 

specifications. Protocol conformance test suites 

execute against service interfaces, verifying 

message formats, parameter ranges, and state 

transitions match standard requirements. Negative 

testing scenarios ensure services handle error 

conditions according to specifications, maintaining 

robustness in adversarial conditions. The 

verification framework includes performance 

benchmarks that confirm services meet latency and 

throughput requirements defined in standards. 

Integration testing validates end-to-end scenarios 

across multiple microservices, ensuring that 

decomposition has not introduced behavioral 

changes visible to external systems. Continuous 

compliance monitoring detects drift from 

specifications as services evolve, triggering alerts 

when updates potentially impact standards 

conformance (Poikselkä, M., & Mayer, G. 2013). 
 

Regulatory requirement fulfillment extends 

beyond technical standards to encompass lawful 

intercept capabilities, emergency services support, 

and data protection regulations. The governance 

framework maps regulatory obligations to specific 

microservices, ensuring comprehensive coverage 

without unnecessary duplication. Audit trails 

capture all configuration changes and access 

patterns, supporting compliance demonstration 

during regulatory reviews. Emergency call 

handling receives special treatment with dedicated 

service instances and priority routing to meet 

availability requirements. Data residency controls 

ensure subscriber information remains within 

required geographic boundaries while enabling 

global service delivery. The implementation 

includes regulatory reporting interfaces that 

generate required disclosures and statistics without 

manual intervention, reducing compliance 

overhead while improving accuracy (Chatterjee, S. 

2021). 
 

API-First Development Approach 

OpenAPI 3.1 contracts serve as the single source 

of truth for service interfaces, driving both 

implementation and documentation. Each 

microservice publishes its API contract as the 

authoritative specification, with implementation 

code generated from specifications rather than 

specifications derived from code. Version 

management strategies support both backward-

compatible minor updates and breaking changes 

through major version increments. The contracts 

include comprehensive examples and validation 

rules that clarify expected behavior beyond basic 

type definitions. Semantic versioning 

communicates change impact clearly, allowing 

consuming services to assess upgrade implications. 

Contract repositories maintain historical versions, 

enabling rollback capabilities and supporting 

multiple versions simultaneously during transition 

periods (Chatterjee, S. 2021). 
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Contract testing and validation ensures that service 

implementations conform to their published APIs 

while detecting breaking changes before 

deployment. Consumer-driven contract tests 

capture actual usage patterns from dependent 

services, validating that providers meet real 

requirements rather than theoretical specifications. 

Mock service generation from OpenAPI 

specifications enables parallel development where 

teams can build against interfaces before 

implementations exist. Contract validation occurs 

at multiple stages including development-time 

linting, build-time verification, and runtime 

monitoring. Breaking change detection analyzes 

differences between contract versions, flagging 

incompatible modifications that would impact 

consumers. The testing framework includes 

performance contracts that specify response time 

expectations, ensuring APIs meet latency 

requirements for real-time communications 

(Poikselkä, M., & Mayer, G. 2013). 
 

API gateway patterns for external interfaces 

provide consistent security, rate limiting, and 

protocol translation at system boundaries. The 

gateway architecture implements authentication 

and authorization for external consumers, mapping 

various credential types to internal service 

identities. Rate limiting protects backend services 

from overload while ensuring fair resource 

allocation among consumers. Protocol translation 

capabilities enable REST/JSON interfaces for 

modern applications while maintaining 

SIP/Diameter support for legacy integrations. The 

gateway provides API versioning support through 

URL routing or header-based selection, allowing 

multiple versions to coexist. Analytics collection at 

the gateway level enables usage tracking and 

capacity planning without instrumenting individual 

services. Circuit breaker integration prevents 

cascade failures from propagating to external 

consumers, maintaining system stability during 

partial outages (Chatterjee, S. 2021). 
 

Deployment and Operations 

Blue-green deployment strategies minimize update 

risk by maintaining parallel production 

environments. The blue environment runs current 

production workloads while green receives updates 

and undergoes validation. Traffic routing occurs at 

the service mesh level, enabling percentage-based 

canary deployments before full cutover. 

Automated smoke tests execute against the green 

environment, verifying basic functionality before 

accepting production traffic. Database migration 

strategies ensure both environments can operate 

against shared persistent stores during transition 

periods. Rollback procedures require only traffic 

rerouting, enabling rapid recovery from failed 

deployments without lengthy restoration processes. 

The architecture supports partial blue-green 

deployments where individual services update 

independently, reducing coordination complexity 

(Chatterjee, S. 2021). 
 

Configuration management separation 

distinguishes between immutable service artifacts 

and environment-specific settings, enabling 

consistent deployments across multiple 

environments. Container images embed 

application code and dependencies while external 

configuration provides environment-specific 

parameters such as database connections and 

service endpoints. Configuration validation occurs 

before deployment, preventing invalid settings 

from reaching production. Secret management 

integrates with container orchestration platforms, 

providing encrypted storage and controlled access 

to sensitive credentials. The separation enables 

identical images to deploy across development, 

staging, and production environments, reducing 

environment-specific defects. Hot reload 

capabilities allow configuration updates without 

service restarts for non-critical parameters, 

minimizing disruption during operational 

adjustments (Poikselkä, M., & Mayer, G. 2013). 
 

Automated rollout gates and health checks ensure 

deployments proceed only when services 

demonstrate readiness for production traffic. 

Progressive rollout strategies gradually increase 

traffic to new versions while monitoring error rates 

and performance metrics. Health check 

implementations go beyond basic liveness probes 

to validate functional readiness including database 

connectivity and dependent service availability. 

Automated rollback triggers activate when health 

metrics exceed configured thresholds, preventing 

widespread impact from defective deployments. 

The gate framework includes business-hour 

restrictions that prevent automated deployments 

during peak traffic periods unless explicitly 

overridden. Multi-stage pipelines implement 

increasing validation rigor from development 

through production, catching issues early while 

maintaining deployment velocity (Chatterjee, S. 

2021). 
 

Maintenance window reduction techniques 

leverage cloud-native capabilities to minimize or 

eliminate service disruption during updates. 

Rolling update strategies replace instances 

gradually while maintaining minimum capacity for 
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uninterrupted service. Pod disruption budgets 

ensure critical services maintain quorum during 

node maintenance or cluster upgrades. Graceful 

shutdown procedures allow in-flight transactions 

to complete before instance termination, 

preventing dropped calls during updates. The 

architecture supports maintenance-mode operation 

where services accept only health check traffic 

while draining production workloads. Predictive 

scaling anticipates capacity needs during 

maintenance activities, preventing performance 

degradation from reduced instance counts. These 

techniques collectively enable continuous delivery 

models where updates deploy during business 

hours without customer impact, transforming 

traditional maintenance windows into routine 

operational activities (Poikselkä, M., & Mayer, G. 

2013). Table 3 presents the comprehensive 

DevSecOps automation framework across all 

deployment stages, detailing the specific tools, 

validation gates, rollback triggers, and target 

metrics that ensure reliable and rapid deployments 

while maintaining carrier-grade service quality 

throughout the continuous delivery pipeline. 
 

Table 3: DevSecOps Automation and Deployment Metrics (Chatterjee, S. 2021) 

Deployment 

Stage 

Automation Tools Validation Gates Rollback 

Triggers 

Target Metrics 

Build Container image 

scanning, Dependency 

checks 

Security vulnerabilities, 

License compliance 

Build failures < 10 min build 

time 

Unit Testing Contract testing, 

Mocking frameworks 

Code coverage, API 

compliance 

Test failures > 80% coverage 

Integration 

Testing 

Service mesh testing, 

End-to-end scenarios 

3GPP compliance, 

Performance benchmarks 

Response time 

degradation 

< 30 min test 

suite 

Staging 

Deployment 

Blue/green switching, 

Canary analysis 

Synthetic transaction 

success, Resource 

utilization 

Error rate 

increase 

< 5 min 

deployment 

Production 

Rollout 

Progressive traffic 

shifting, A/B testing 

Real user metrics, 

Business KPIs 

SLA violations Zero-downtime 

deployment 

Post-

Deployment 

Observability platforms, 

Anomaly detection 

Service health, Customer 

impact 

Automated 

incident 

detection 

< 1 min 

detection time 

 

CONCLUSION 
The transformation of monolithic SIP/IMS cores 

into cloud-native microservices architectures 

represents a fundamental shift in how 

telecommunications operators design, deploy, and 

maintain their critical voice and messaging 

infrastructure. This architectural evolution 

addresses the inherent limitations of traditional 

appliance-based deployments by decomposing 

tightly coupled functions into discrete, 

independently scalable services orchestrated on 

Kubernetes platforms. The implementation of 

service mesh patterns provides sophisticated traffic 

management and security capabilities essential for 

carrier-grade communications, while event-driven 

architectures enable efficient handling of billing, 

analytics, and regulatory compliance without 

impacting real-time call processing. 
 

Through systematic application of DevSecOps 

practices and API-first development principles, 

operators can achieve continuous delivery 

capabilities previously unavailable in 

telecommunications environments. The 

governance frameworks ensure that this 

modernization maintains strict compliance with 

3GPP standards and regulatory requirements while 

enabling the operational agility demanded by 

competitive markets. By embracing stateless 

service design, automated deployment strategies, 

and zero-trust security models, 

telecommunications providers can significantly 

reduce maintenance windows and operational 

overhead while improving service reliability and 

innovation velocity. 
 

The architectural patterns and implementation 

strategies presented in this article offer a practical 

roadmap for operators seeking to modernize their 

infrastructure without disrupting existing services. 

The clear separation of concerns, comprehensive 

monitoring capabilities, and automated operational 

procedures enable telecommunications providers 

to achieve the same level of agility as cloud-native 

enterprises while maintaining the stringent 

reliability requirements of carrier-grade services. 
 

Future research directions include the integration 

of artificial intelligence and machine learning for 
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autonomous network operations, enabling self-

healing capabilities that further reduce operational 

complexity. Edge computing integration presents 

opportunities for ultra-low latency services by 

deploying microservices closer to end users. The 

evolution toward fully serverless architectures may 

further simplify operations by eliminating 

infrastructure management overhead. As 5G and 

beyond networks continue to evolve, the cloud-

native principles established through IMS 

transformation will provide the foundation for 

next-generation telecommunications services. 
 

REFERENCES 
1. Amogh, P. C., Veeramachaneni, G., 

Rangisetti, A. K., Tamma, B. R., & Franklin, 

A. A. "A cloud native solution for dynamic 

auto scaling of MME in LTE."  IEEE 28th 

Annual International Symposium on Personal, 

Indoor, and Mobile Radio Communications 

(PIMRC). IEEE, (2017). 

2. Hersent, O. “IP telephony: deploying VoIP 

protocols and IMS infrastructure.” John Wiley 

& Sons, (2011). 

3. Kazanavičius, J., & Mažeika, D. "An approach 

to migrate from legacy monolithic application 

into microservice architecture." 2023 IEEE 

Open Conference of Electrical, Electronic and 

Information Sciences (eStream). IEEE, (2023). 

4. Douhara, R., Hsu, Y. F., Yoshihisa, T., 

Matsuda, K., & Matsuoka, M. "Kubernetes-

based workload allocation optimizer for 

minimizing power consumption of computing 

system with neural network." 2020 

International Conference on Computational 

Science and Computational Intelligence 

(CSCI). IEEE, (2020). 

5. Farkiani, B., & Jain, R. "Service Mesh: 

Architectures, Applications, and 

Implementations." arXiv preprint 

arXiv:2405.13333 (2024). 

6. Poikselkä, M., & Mayer, G. “IP multimedia 

concepts and services.” John Wiley & Sons, 

(2013).  

7. Wang, G., Koshy, J., Subramanian, S., 

Paramasivam, K., Zadeh, M., Narkhede, N., ... 

& Stein, J. "Building a replicated logging 

system with Apache Kafka." Proceedings of 

the VLDB Endowment 8.12 (2015): 1654-

1655. 

8. Arteaga, C. H. T., Ordoñez, A., & Rendon, O. 

M. C. "Scalability and performance analysis in 

5G core network slicing." Ieee Access 8 

(2020): 142086-142100. 

9. Chatterjee, S. “Designing API-First Enterprise 

Architectures on Azure.”Packt Publishing, 

(2021).

 

 

 

 

Source of support: Nil; Conflict of interest: Nil. 
Cite this article as: 

Jaiswal, D. " Cloud-Native Transformation of SIP/IMS Core Networks: A Microservices Architecture for Next-

Generation Telecommunications." Sarcouncil Journal of Multidisciplinary 5.7 (2025): pp 907-918. 

 


