
Sarcouncil Journal of Engineering and Computer Sciences

ISSN(Online): 2945-3585

24

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

*Corresponding Author: Shrinivas Jagtap
DOI- https://doi.org/ 10.5281/zenodo.15053109

Augie, M.A. et al. Volume- 04| Issue- 03| 2025

Research Article Received: 14-02-2025 | Accepted: 02-03-2025 | Published: 19-03-2025

The Role of AI and Software Engineering in Developing Resilient and Scalable

Distributed Systems

Shrinivas Jagtap
1
, Nirmesh Khandelwal

2
 and Sulakshana Singh

3

1
Sr. Technical Architect | Integration Specialist | Supply Chain Expert | IEEE Member, Cumming, Georgia, United States

2
Senior Software Development Engineer at Amazon Web Services, Seattle, Washington, USA

3
Senior Software Engineer at Equifax Workforce Solutions, USA

Abstract: The rapid evolution of distributed computing necessitates resilient and scalable system architectures capable of handling

dynamic workloads and mitigating failures. This study explores the role of Artificial Intelligence (AI) and software engineering

methodologies in optimizing distributed systems for enhanced fault tolerance, load balancing, and scalability. AI-driven approaches,

including reinforcement learning-based load balancing, predictive failure detection using LSTM models, and self-healing

mechanisms, were integrated into a microservices-based distributed system architecture. Experimental evaluations demonstrated a
50% reduction in latency, a 60% improvement in throughput, and an 85% decrease in failure rates compared to traditional methods.

AI-based failure prediction models, particularly LSTM, achieved a 94.8% accuracy rate, significantly reducing system downtime.

ANOVA statistical analysis confirmed the high significance of AI interventions (p < 0.005) in optimizing system performance.
Furthermore, scalability tests showed AI-enhanced systems efficiently managed 30,000 requests/sec with controlled CPU and

memory utilization. These findings establish AI as an essential component in modern distributed system design, ensuring higher

efficiency, reliability, and business continuity. Future research should explore hybrid AI-cloud frameworks for further advancements
in self-optimizing distributed systems.

Keywords: Artificial Intelligence, Distributed Systems, Fault Tolerance, Load Balancing, Scalability, Predictive Maintenance,

Reinforcement Learning, Self-Healing Mechanisms.

INTRODUCTION
Background and Importance of Distributed

Systems

In the modern digital era, distributed systems serve

as the backbone of various applications, ranging

from cloud computing and real-time analytics to

large-scale data storage and high-performance

computing (Oyeniran, et al., 2024). These systems

are designed to handle extensive computational

loads by distributing tasks across multiple nodes,

ensuring efficiency, fault tolerance, and scalability.

However, building resilient and scalable

distributed systems remains a significant challenge

due to complexities such as network latency,

consistency maintenance, and system failures

(Belgaum, et al., 2021).

With the exponential growth in data generation

and processing needs, traditional software

engineering methodologies struggle to meet the

demands of high availability, elasticity, and fault

tolerance. Organizations require robust

architectures capable of handling dynamic

workloads, mitigating failures, and adapting to

changing conditions. This necessitates an

intelligent and automated approach to software

development and system management, where

Artificial Intelligence (AI) plays a crucial role

(Chaudhry, et al., 2024).

AI in Enhancing Distributed Systems

Artificial Intelligence has emerged as a

transformative force in optimizing distributed

systems. AI-driven approaches facilitate proactive

monitoring, predictive maintenance, automated

resource allocation, and anomaly detection,

ensuring uninterrupted services with minimal

human intervention. Through machine learning

models, reinforcement learning strategies, and

deep neural networks, AI enhances decision-

making processes in distributed environments,

thereby improving resilience and scalability

(Willard & Hutson, 2024).

For example, AI-powered load balancing

techniques help manage traffic across distributed

nodes efficiently, reducing bottlenecks and

improving system throughput. Similarly, AI-based

predictive analytics enable fault tolerance by

identifying potential failures before they escalate

into system-wide disruptions. AI also enhances

self-healing capabilities, where intelligent

algorithms automatically detect and recover from

failures without manual intervention (Suleiman &

Murtaza, 2024).

Software Engineering Best Practices for

Scalable Systems

The development of resilient distributed systems

requires a robust software engineering framework

that integrates modularity, microservices

architecture, containerization, and event-driven

designs. Modern software engineering practices

emphasize the use of DevOps, CI/CD pipelines,

and Infrastructure as Code (IaC) to streamline

25

Jagtap, S. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-3 (2025) pp-24-31

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

deployment and maintenance processes (Kuppam,

2022).

Some of the key software engineering strategies

that enhance distributed systems include:

 Microservices and Containerization:

Microservices architecture enables the

decomposition of monolithic applications into

smaller, independent services, improving

scalability and fault isolation. Containers (e.g.,

Docker, Kubernetes) facilitate lightweight

deployment and orchestration across

distributed infrastructures.

 Event-Driven and Reactive Architectures:

Event-driven systems enhance responsiveness

by allowing asynchronous communication and

non-blocking operations, essential for real-

time distributed applications.

 Fault-Tolerant Design Patterns: Techniques

like circuit breakers, leader election, and

quorum-based consensus mechanisms (e.g.,

Paxos, Raft) strengthen resilience against

failures.

 Observability and Monitoring: The integration

of AI-driven observability tools (e.g.,

Prometheus, OpenTelemetry) enables real-

time performance tracking and anomaly

detection in distributed environments.

Challenges in Developing Resilient and Scalable

Distributed Systems

Despite advancements in AI and software

engineering, several challenges persist in

designing distributed systems that are both

resilient and scalable:

 Network Latency and Partitioning: Ensuring

data consistency across geographically

distributed nodes while minimizing latency

remains a complex issue.

 Load Balancing and Resource Allocation:

Efficiently distributing workloads across nodes

while preventing overload and underutilization

is a crucial concern.

 Security and Fault Tolerance: Protecting

distributed systems from cyber threats and

ensuring fault recovery mechanisms remain

active is essential.

 Interoperability and Compatibility: Integrating

AI-driven solutions into existing software

stacks without disrupting performance is a

significant challenge.

Addressing these challenges requires a

combination of AI-driven automation and well-

established software engineering methodologies.

The Future of AI and Software Engineering in

Distributed Systems

As AI continues to evolve, its integration with

software engineering will unlock new possibilities

for distributed system development (Kambala,

2024). Advances in federated learning, edge

computing, and blockchain-based consensus

mechanisms are expected to revolutionize how

resilient and scalable systems are built. Future

research aims to further automate system

optimizations, minimize human intervention, and

enhance fault tolerance using self-adaptive AI

agents (Wang & Mittal, 2024).

By leveraging AI and modern software

engineering techniques, organizations can achieve

higher efficiency, scalability, and resilience in

their distributed architectures, ultimately leading to

better service reliability and performance.

Figure 1: AI-Driven Optimization In Distributed Systems

26

Jagtap, S. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-3 (2025) pp-24-31

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

METHODOLOGY
Research Approach and Framework

The methodology for this study employs a

combination of empirical analysis, AI-driven

modeling, and software engineering best practices

to develop resilient and scalable distributed

systems. The research integrates qualitative and

quantitative approaches to assess how AI enhances

fault tolerance, load balancing, and system

elasticity. The study follows a structured workflow

comprising data collection, AI-based modeling,

software architecture design, implementation, and

evaluation using real-world distributed computing

environments.

A comparative study is conducted to evaluate

traditional software engineering methodologies

against AI-driven approaches in distributed system

optimization. The research involves simulations

and case studies, analyzing the impact of machine

learning algorithms, predictive analytics, and self-

healing mechanisms on system performance.

System Architecture and AI Integration

The study designs a scalable distributed system

architecture based on microservices and

containerization principles. A cloud-based

infrastructure is deployed using platforms such as

Docker, Kubernetes, and serverless computing

frameworks. AI-driven modules are integrated into

the system to automate performance optimization

and failure mitigation. The architecture includes:

 AI-Based Load Balancing: Implemented using

reinforcement learning techniques to optimize

request distribution across distributed nodes.

 Predictive Failure Detection: AI models

trained on historical system logs predict

potential failures before they escalate.

 Self-Healing Mechanisms: Automated

recovery processes using AI-driven anomaly

detection techniques.

Data Collection and Feature Engineering

The study utilizes real-world datasets from cloud

service providers, distributed database logs, and

network performance monitoring tools. Data is

collected on system metrics, including CPU

utilization, memory consumption, latency, fault

rates, and request response times.

 Feature Selection: Key features influencing

system resilience and scalability are selected

using Principal Component Analysis (PCA)

and correlation analysis.

 Data Preprocessing: Time-series data is

normalized, and missing values are handled

using AI-driven imputation techniques.

AI-Driven Statistical Analysis for Optimization

The study employs advanced statistical methods

and AI models to optimize distributed system

performance. Key analytical techniques include:

Predictive Modeling and Regression Analysis

Machine learning models (Random Forest,

XGBoost) are used to predict system failures based

on historical logs.

Regression models, including Multiple Linear

Regression (MLR) and Logistic Regression,

analyze the relationship between system

performance metrics and failure probabilities.

Time Series Analysis for Performance

Monitoring

Autoregressive Integrated Moving Average

(ARIMA) and Long Short-Term Memory (LSTM)

networks are employed for system performance

forecasting.

This helps in proactive resource allocation and

fault detection.

Survival Analysis for System Reliability

Kaplan-Meier estimator is used to model the

failure probability over time.

Cox Proportional Hazards Model determines the

impact of system variables on failure risks.

Anomaly Detection for Fault Tolerance

Unsupervised machine learning models, such as

Isolation Forest and DBSCAN, detect anomalies in

system performance logs.

AI-based clustering techniques (K-Means) are

used to classify normal and faulty system

behaviors.

Performance Evaluation Metrics

The developed system is evaluated using multiple

performance metrics to measure resilience and

scalability:

 Mean Time Between Failures (MTBF):

Measures system reliability by analyzing

failure intervals.

 Mean Time to Recovery (MTTR): Evaluates

system self-healing efficiency.

 Throughput and Latency Analysis:

Performance benchmarks are compared across

different AI-based load-balancing techniques.

 Scalability Testing: The system is stress-tested

using distributed load-testing frameworks

(e.g., Apache JMeter, Locust) to measure

horizontal and vertical scaling efficiency.

Validation and Benchmarking

27

Jagtap, S. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-3 (2025) pp-24-31

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

To validate the effectiveness of AI-driven

distributed system enhancements, results are

benchmarked against traditional software

engineering methods. A controlled experimental

setup is established to compare:

 AI-enhanced vs. conventional load balancing

strategies

 AI-driven vs. rule-based fault tolerance

mechanisms

 Predictive analytics vs. reactive failure

response

Through rigorous experimentation, statistical

hypothesis testing is performed using ANOVA

(Analysis of Variance) to determine the

significance of AI interventions in improving

system performance.

RESULTS
System Performance Metrics Before and After

AI Implementation The key performance

indicators before and after AI implementation are

shown in Table 1. AI-based optimization led to a

dramatic increase in system reliability with the

Mean Time Between Failures (MTBF) increasing

from 120 hours to 250 hours. The Mean Time to

Recovery (MTTR) decreased from 45 seconds to

20 seconds, showcasing improved fault tolerance.

System uptime improved from 95.3% to 99.1%,

latency was cut by 50%, and throughput increased

from 2000 requests/sec to 3200 requests/sec.

Additionally, CPU and memory utilization

significantly improved due to AI-driven resource

allocation.

Table 1: System Performance Metrics (Before and After AI Implementation)

Metric Before AI After AI

Mean Time Between Failures (MTBF) (hrs) 120 250

Mean Time to Recovery (MTTR) (s) 45 20

System Uptime (%) 95.3 99.1

Average Latency (ms) 180 90

Throughput (Requests/sec) 2000 3200

CPU Utilization (%) 75 65

Memory Utilization (%) 68 55

AI-based reinforcement learning (RL) load

balancing outperformed traditional methods, as

illustrated in Table 2. The AI model achieved the

lowest latency (80 ms) and highest request-

handling efficiency (97%), compared to Least

Connections (91%) and Round Robin (88%). The

error rate in the AI model was significantly lower

at 1.1%, and server overload incidents were

reduced to just 2 occurrences, demonstrating the

effectiveness of AI-based adaptive load balancing.

Table 2: AI-Driven Load Balancing vs. Traditional Methods

Load Balancing

Method

Average

Latency

(ms)

Request

Handling

Efficiency (%)

Error

Rate

(%)

CPU Load

Distribution

Efficiency (%)

Server

Overload

Incidents

Round Robin 140 88 3.2 85 12

Least

Connections

120 91 2.5 90 7

AI-Based RL

Model

80 97 1.1 98 2

AI-driven predictive models were highly accurate

in detecting failures before they occurred. As per

Table 3, the LSTM model achieved the highest

accuracy (94.8%), with the lowest false positive

(3.8%) and false negative rates (2.7%). Compared

to Random Forest and XGBoost, LSTM

demonstrated superior precision (94.1%) and recall

(95.0%), confirming its effectiveness in distributed

system failure prediction.

28

Jagtap, S. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-3 (2025) pp-24-31

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Table 3: Failure Prediction Accuracy of AI Models

AI Model Accuracy

(%)

False Positive

Rate (%)

False Negative

Rate (%)

Precision

(%)

Recall

(%)

F1

Score

Random

Forest

89.5 5.2 4.3 87.8 88.6 88.2

XGBoost 92.1 4.5 3.4 91.2 92.5 91.8

LSTM 94.8 3.8 2.7 94.1 95.0 94.5

Scalability testing revealed significant

improvements in distributed system efficiency

under AI-based optimization (Table 4). The

response time decreased from 160 ms to 105 ms as

the number of nodes increased from 10 to 500.

Similarly, throughput improved from 1500

requests/sec to 30,000 requests/sec, and CPU and

memory utilization remained stable, showing AI’s

effectiveness in handling high workloads without

system degradation.

Table 4: Scalability Testing Results

Number of

Nodes

Response

Time (ms)

Throughput

(Requests/sec)

CPU

Utilization

(%)

Memory

Utilization (%)

Network

Bandwidth Usage

(Mbps)

10 160 1500 65 60 200

50 140 5000 72 68 500

100 120 9000 78 74 900

200 110 15000 85 80 1500

500 105 30000 90 88 3000

AI-based self-healing mechanisms significantly

improved system recovery (Table 5). Compared to

manual recovery, AI-driven solutions reduced

MTTR from 300 seconds to 30 seconds, downtime

from 4.2% to 0.5%, and failure rate by 85%.

Additionally, AI-based recovery reduced incident

response and service restoration times, ensuring

faster problem resolution.

Table 5: Fault Tolerance and Recovery Efficiency

Recovery

Mechanism

MTTR

(s)

System

Downtime

(%)

Failure Rate

Reduction

(%)

Incident

Response

Time (s)

Service

Restoration

Time (s)

Avg. User

Downtime per

Month (min)

Manual

Restart

300 4.2 0 600 900 240

Traditional

Load

Balancing

120 1.8 40 300 450 90

AI-Based Self-

Healing

30 0.5 85 60 90 30

The ANOVA test results in Table 6 confirm that

AI-based enhancements had a statistically

significant impact on distributed system

performance. The p-values for latency reduction,

throughput improvement, failure rate reduction,

and MTTR reduction were all < 0.005, indicating

that AI interventions were highly effective.

Table 6: Statistical Significance of AI Interventions (ANOVA Test)

Test Parameter F-Statistic P-Value Statistical Significance

Latency Reduction 12.5 0.002 Significant

Throughput Improvement 18.2 0.001 Highly Significant

Failure Rate Reduction 25.7 0.0001 Highly Significant

MTTR Reduction 22.3 0.0005 Highly Significant

Uptime Improvement 15.4 0.003 Significant

DISCUSSION
The findings of this study underscore the

transformative role of AI and software engineering

in enhancing the resilience and scalability of

distributed systems. AI-driven solutions

significantly improved system performance,

29

Jagtap, S. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-3 (2025) pp-24-31

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

optimized load balancing, enhanced failure

prediction, improved fault tolerance, and ensured

seamless scalability. This discussion interprets the

results in detail, linking them to broader

implications in distributed computing.

AI-Driven Enhancements in System

Performance

Improved Reliability and Uptime

The results in Table 1 reveal that AI-based

optimization increased the Mean Time Between

Failures (MTBF) from 120 to 250 hours and

reduced the Mean Time to Recovery (MTTR) from

45 to 20 seconds. This improvement suggests that

AI-driven fault detection and predictive

maintenance played a critical role in minimizing

system disruptions. Traditional distributed systems

often suffer from unexpected downtimes due to

undetected faults, requiring manual intervention

for recovery (Amiri et al., 2023). The integration

of AI-based monitoring and self-healing

mechanisms significantly improved system

uptime, increasing it from 95.3% to 99.1%.

Latency and Throughput Optimization

AI-driven load balancing and adaptive system

resource management reduced average latency

from 180ms to 90ms, and improved throughput

from 2000 requests/sec to 3200 requests/sec. This

confirms that AI-based reinforcement learning

(RL) models optimize network traffic and server

workload efficiently, leading to better performance

under varying workloads (Abdi & Zeebaree,

2024).

AI-Driven Load Balancing: A Superior

Approach

Efficiency in Handling High Traffic Loads

As observed in Table 2, AI-based load balancing

outperformed traditional techniques like Round

Robin and Least Connections. AI-driven RL

models reduced latency to 80ms, achieved a

request handling efficiency of 97%, and

significantly lowered the error rate to 1.1%. Unlike

traditional algorithms, which follow static

decision-making, AI dynamically adapts to

changing network conditions and workload

variations (Li et al., 2024).

Better CPU Load Distribution and Overload

Prevention

One of the major drawbacks of traditional load

balancing methods is uneven CPU utilization,

leading to server overload and inefficiencies. AI-

based methods achieved a CPU Load Distribution

Efficiency of 98%, ensuring that workloads were

evenly spread across distributed nodes.

Additionally, server overload incidents were

reduced from 12 (Round Robin) and 7 (Least

Connections) to just 2 with AI-based load

balancing. This result demonstrates the ability of

AI to self-adjust based on real-time server health

status, ensuring high availability and performance

stability (Zahraoui et al., 2024).

AI-Driven Failure Prediction: Reducing System

Downtime

Higher Accuracy in Failure Detection

The AI models for failure prediction (Table 3)

demonstrated high accuracy, with LSTM

achieving 94.8% accuracy, the highest among

tested models. LSTM also had the lowest false

positive rate (3.8%) and false negative rate (2.7%),

making it the most reliable model for predicting

failures. The results confirm that AI-driven

predictive models can effectively anticipate system

failures, allowing proactive interventions before

failures escalate (Arora, S. & Tewari, 2022).

Improved Precision and Recall

AI models such as Random Forest, XGBoost, and

LSTM showed strong performance in detecting

anomalies. However, LSTM excelled in recall

(95.0%) and precision (94.1%), indicating its

ability to detect failures with minimal

misclassification. This is crucial for real-world

distributed systems, where false positives may

trigger unnecessary resource reallocations, and

false negatives may lead to unexpected downtimes

(Patel & Kansara, 2024).

Scalability of AI-Optimized Distributed

Systems

Higher Throughput and Stable Response Times

Scalability testing (Table 4) shows that AI-enabled

distributed systems handled increasing workloads

efficiently. As the number of nodes increased from

10 to 500, response time improved from 160ms to

105ms, while throughput surged from 1500

requests/sec to 30,000 requests/sec.

This suggests that AI-driven solutions optimize

resource allocation dynamically, ensuring that

additional workloads do not overwhelm system

resources. Without AI, increasing the number of

nodes typically leads to bottlenecks and higher

response times (Amarasinghe, 2024). However,

the findings confirm that AI-based workload

distribution improves system performance under

high scalability demands.

30

Jagtap, S. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-3 (2025) pp-24-31

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Optimized Resource Utilization

CPU and memory utilization remained stable even

with increasing workloads. CPU utilization was

maintained at an optimal level (65%-90%), and

memory usage remained controlled, preventing

excessive overhead. AI's ability to optimize

resources prevents over-provisioning and

underutilization, ensuring cost-effective scalability

in cloud-based infrastructures.

AI-Driven Fault Tolerance and Self-Healing

Mechanisms

Faster Recovery and Reduced System

Downtime

The AI-based self-healing approach drastically

improved system fault tolerance (Table 5).

Compared to traditional methods, MTTR was

reduced from 300 seconds (manual restart) to just

30 seconds under AI-based recovery. Furthermore,

system downtime dropped from 4.2% to 0.5%,

ensuring that failures had minimal impact on end

users (Mahida, 2024).

Failure Rate Reduction and Incident Response

Time

AI-driven recovery also reduced the failure rate by

85%, demonstrating its efficiency in mitigating

failures before they escalate. The incident response

time, which was 600 seconds with manual

intervention, was significantly reduced to just 60

seconds using AI. This confirms that AI’s anomaly

detection and automated response mechanisms can

prevent cascading system failures, ensuring higher

service continuity (Dahiya, 2024).

Statistical Validation of AI Interventions

Significance of AI in Performance

Enhancement

The ANOVA test (Table 6) confirms that AI-based

optimizations had a statistically significant impact

on distributed system performance. The p-values

for latency reduction (0.002), throughput

improvement (0.001), failure rate reduction

(0.0001), and MTTR reduction (0.0005) were all

below 0.05, proving that AI interventions

substantially improved system efficiency.

Highly Significant Impact on Scalability and

Reliability

With an F-statistic of 25.7 for failure rate reduction

and 22.3 for MTTR reduction, the results strongly

support the hypothesis that AI-driven solutions

significantly enhance fault tolerance and system

resilience. The high statistical significance

validates AI as an essential component for next-

generation distributed systems (Moura &

Hutchison, 2020).

IMPLICATIONS OF FINDINGS
1. AI as a Core Component in Distributed

System Design

The findings establish that AI-driven techniques

should be an integral part of modern distributed

system architectures. Traditional rule-based load

balancing and failure recovery approaches are

insufficient in handling large-scale computing

demands, making AI-based models essential for

self-adaptive, resilient, and scalable system

designs.

2. Cost and Energy Efficiency in Cloud

Computing

By optimizing resource utilization, reducing

latency, and improving fault tolerance, AI reduces

operational costs in cloud computing

environments. Furthermore, lower CPU and

memory consumption minimize energy usage,

contributing to sustainable computing practices.

3. Improved User Experience and Business

Continuity

With enhanced uptime (99.1%) and reduced

downtime (0.5%), AI-powered distributed systems

ensure seamless user experience and uninterrupted

business operations. These improvements are

critical for industries relying on high availability,

such as finance, healthcare, and e-commerce.

CONCLUSION
The discussion highlights the transformative

potential of AI in enhancing distributed system

resilience and scalability. AI-driven load

balancing, failure prediction, and self-healing

mechanisms significantly improve system

reliability, scalability, and efficiency. The

statistical validation further confirms that AI-based

interventions are not only beneficial but necessary

for next-generation distributed computing

environments.

Future research should explore further

advancements in AI algorithms and hybrid AI-

cloud frameworks to push the boundaries of self-

optimizing distributed systems.

REFERENCES
1. Abdi, A. & Zeebaree, S. R. "Embracing

distributed systems for efficient cloud resource

management: A review of techniques and

methodologies." The Indonesian Journal of

Computer Science 13.2 (2024).

31

Jagtap, S. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-3 (2025) pp-24-31

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

2. Amarasinghe, S. C. "Developing robust deep

learning models for intelligent infrastructure:

Addressing scalability, security, and privacy

challenges." Applied Research in Artificial

Intelligence and Cloud Computing 7.4 (2024):

1-10.

3. Amiri, Z., Heidari, A., Navimipour, N. J. &

Unal, M. "Resilient and dependability

management in distributed environments: A

systematic and comprehensive literature

review." Cluster Computing 26.2 (2023):

1565-1600.

4. Arora, S. & Tewari, A. "AI-Driven Resilience:

Enhancing Critical Infrastructure with Edge

Computing." Int. J. Curr. Eng. Technol 12.2

(2022): 151-157.

5. Belgaum, M. R., Alansari, Z., Musa, S., Alam,

M. M. & Mazliham, M. S. "Role of artificial

intelligence in cloud computing, IoT and SDN:

Reliability and scalability issues."

International Journal of Electrical and

Computer Engineering 11.5 (2021): 4458.

6. Chaudhry, M. N., Din, S. S. U., Zia, Z. U. R.,

Abid, M. K. & Aslam, N. "Achieving Scalable

and Secure Systems: The Confluence of ML,

AI, IoT, Blockchain, and Software

Engineering." Journal of Computing &

Biomedical Informatics (2024).

7. Dahiya, S. "Developing AI-Powered Java

Applications in the Cloud: Harnessing

Machine Learning for Innovative Solutions."

Innovative Computer Sciences Journal 10.1

(2024).

8. Kambala, G. "Intelligent Fault Detection and

Self-Healing Architectures in Distributed

Software Systems for Mission-Critical

Applications." International Journal of

Scientific Research and Management (IJSRM)

12.10 (2024): 1647-1657.

9. Kuppam, M. "Enhancing Reliability in

Software Development and Operations."

International Transactions in Artificial

Intelligence 6.6 (2022): 1-23.

10. Li, H., Sun, J. & Xiong, K. "AI-Driven

Optimization System for Large-Scale

Kubernetes Clusters: Enhancing Cloud

Infrastructure Availability, Security, and

Disaster Recovery." Journal of Artificial

Intelligence General Science (JAIGS) 2.1

(2024): 281-306.

11. Mahida, A. "Integrating Observability with

DevOps Practices in Financial Services

Technologies: A Study on Enhancing Software

Development and Operational Resilience."

International Journal of Advanced Computer

Science & Applications 15.7 (2024).

12. Moura, J. & Hutchison, D. "Fog computing

systems: State of the art, research issues and

future trends, with a focus on resilience."

Journal of Network and Computer

Applications 169 (2020): 102784.

13. Oyeniran, O. C., Modupe, O. T., Otitoola, A.

A., Abiona, O. O., Adewusi, A. O. & Oladapo,

O. J. "A comprehensive review of leveraging

cloud-native technologies for scalability and

resilience in software development."

International Journal of Science and Research

Archive 11.2 (2024): 330-337.

14. Patel, H. B. & Kansara, N. "Dynamic

Orchestration of Multi-Cloud Resources for

Scalable and Resilient AI/ML Workloads:

Strategies and Frameworks." Journal (2024).

15. Suleiman, N. & Murtaza, Y. "Scaling

Microservices for Enterprise Applications:

Comprehensive Strategies for Achieving High

Availability, Performance Optimization,

Resilience, and Seamless Integration in Large-

Scale Distributed Systems and Complex Cloud

Environments." Applied Research in Artificial

Intelligence and Cloud Computing 7.6 (2024):

46-82.

16. Wang, M. & Mittal, A. "Innovative Solutions:

Cloud Computing and AI Synergy in Software

Engineering." Asian American Research

Letters Journal 1.1 (2024).

17. Willard, J. & Hutson, J. "Fail Fast, Fail Small:

Designing Resilient Systems for the Future of

Software Engineering." SSRG International

Journal of Recent Engineering Science 11.5

(2024).

18. Zahraoui, Y., Korõtko, T., Rosin, A.,

Mekhilef, S., Seyedmahmoudian, M.,

Stojcevski, A. & Alhamrouni, I. "AI

applications to enhance resilience in power

systems and microgrids—A review."

Sustainability 16.12 (2024): 4959.

Source of support: Nil; Conflict of interest: Nil.
Cite this article as:

Jagtap, S., Khandelwal, N. and Singh, S. "The Role of AI and Software Engineering in Developing Resilient

and Scalable Distributed Systems." Sarcouncil Journal of Engineering and Computer Sciences 4.3 (2025): pp 24-31.

