
Sarcouncil Journal of Engineering and Computer Sciences

ISSN(Online): 2945-3585

168

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

*Corresponding Author: Srinivas Allam
DOI- https://doi.org/10.5281/zenodo.17652964

Augie, M.A. et al.,. Volume- 04| Issue- 11| 2025

Research Article Received: 10-10-2025| Accepted: 05-11-2025 | Published: 19-11-2025

Incremental Modernization: APIs, DevOps, and Cloud-Readiness in IBM i

Environments

Srinivas Allam

Core ITS LLC, USA

Abstract: The digital transformation of enterprise computing infrastructure requires IBM i platforms to evolve from isolated

legacy systems to integrated parts of modern digital ecosystems. This transformation is intended to meet the critical challenge of

preserving decades of proven business logic and institutional knowledge while making possible contemporary capabilities like API-

driven integration, DevOps automation, and cloud deployment flexibility. Anchored by the Strangler Application pattern, the

modular evolutionary approach allows for incremental porting of monolithic applications to microservices architectures without

impairing operational continuity. API enablement is a basic enabler for exposing IBM i functionality to mobile applications, cloud

services, and partner systems as RESTful interfaces and event-driven architectures. A combination of distributed version control

systems, continuous integration pipelines, and modern development environments changes the repetitive IBM i development

processes into agile collaborative development processes in accordance with industry best practices. The cloud migration strategies

that include lift-and-shift migrations, hybrid frameworks, as well as fully offered services offer companies the versatile mechanisms

to harness elastic capacity and geographic dispersion, besides catering to security and compliance requirements. Such a combination

of technological and methodological innovations establishes a sustainable architecture of evolutionary change that successfully

strikes a balance between innovation needs and the needs of operational stability to keep the IBM i platforms strategic to enterprise

architectures and support digital business agendas.

Keywords: IBM i Modernization, Api Enablement, Devops Integration, Cloud Migration, Microservices Architecture.

INTRODUCTION
The digital transformation requirement has put

legacy systems at a crossroads where they need to

evolve without losing the vital business value that

decades of operational perfection have

accumulated. The AS/400 or iSeries environments,

now called IBM i, constitute a major portion of

enterprise computing infrastructure, particularly in

financial services, manufacturing, and retail.

According to the recent marketplace survey data,

IBM i platform is still demonstrating incredible

resilience and strategic significance because 58

percent of organizations report that their

dependency on their IBM i systems has increased

in the last three years, and 21 percent of

organizations reported no change in their

dependence with the platform and only 8 percent

of organizations indicate the reduced dependency

on the platform (Huntington, T. 2025). Moreover,

the survey shows that 84% of organizations

consider their IBM i systems as critical or very

important to business operations, pointing to their

sustaining role in enterprise computing

architectures (Huntington, T. 2025). These systems

continue to run mission-critical workloads with

exceptional reliability, yet are under increasing

pressure to integrate into modern architectures,

support contemporary development practices, and

tap cloud computing capabilities that have become

fundamental for competitive positioning across

digital markets.

Traditional approaches to system modernization

have often advocated for wholesale replacement or

"rip-and-replace" strategies, approaches that carry

substantial risk, require extensive capital

investment, and all too often result in project

failures or significant cost overruns. Empirical

analysis of legacy system migration projects

reveals that big-bang replacement methodologies

find profound challenges: the complexity of

reimplementing decades of accumulated business

logic, regulatory compliance rules, and operational

workflows is found to be far more difficult than

ever imagined (Availability Digest, 2007).

Organizations attempting wholesale system

replacements frequently find themselves facing a

situation where comprehensive requirements

documentation does not exist, institutional

knowledge resides with personnel approaching

retirement age, and subtle intricacies of business

rule implementations cannot be reduced to reverse

engineering attempts (Availability Digest, 2007).

The incremental approach to the migration of

legacy systems presents a very different paradigm,

recognizing that evolutionary transformation

through gateway interfaces and progressive

modernization reduces risk while maintaining

operational continuity (Availability Digest, 2007).

This approach allows organizations to preserve the

substantial investment in proven business logic

and incrementally introduce modern capabilities,

169

Allam, S. Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

avoiding catastrophic failures that have

characterized many high-profile big-bang

migration attempts in the literature across

industries (Availability Digest, 2007).

The paper represents an academic investigation

into the principles, methods, and technology

enablers that form the basis of incremental

modernization strategies for IBM i platforms. It

looks at API enablement as a core building block,

integration with modern DevOps toolchains,

migration paths to the cloud and hybrid cloud

architectures, and the emerging role of artificial

intelligence in enhancing system reliability along

the steps of the modernization process. The aim is

to provide a theoretical and practical framework

for evolutionary transformation that would

preserve institutional knowledge while enabling

digital capabilities required for competitive

positioning in modern markets, on the basis of

empirical evidence that demonstrates the technical

feasibility and economic viability of graduated

transformation approaches.

Table 1: IBM i Platform Characteristics and Migration Challenges (Huntington, T. 2025; Availability Digest,

2007)

Aspect Traditional Environment Modernization Challenge

System Criticality Mission-critical operations Integration with contemporary architecture

Business Logic Decades of refined workflows Preservation during transformation

Documentation Limited or absent Institutional knowledge capture

Personnel An aging expert workforce Knowledge transfer requirements

THE MODULAR EVOLUTIONARY
APPROACH TO LEGACY SYSTEM
TRANSFORMATION
The modular evolutionary approach represents a

paradigm shift from traditional modernization

strategies focused on disruptive replacement. This

methodology recognizes that a lot of significant

business logic, mechanisms for ensuring

regulatory compliance, and operational workflows

have been embedded in those legacy systems,

which have become refined with several years of

production use. The strangler application pattern

provides a structured approach to this

transformation; it describes how organizations can

incrementally migrate monolithic applications to a

microservices architecture through incremental

build-ups of new functionality around the core of

legacy systems and concurrently decommissioning

old components (Brown, K. 2020). It is an

effective pattern for IBM i environments where

total replacement of systems is fraught with

unacceptable business risk, given that it allows the

coexistence of new microservices with existing

monolithic applications through well-defined API

interfaces intercepting calls and progressively

routing them to modernized components (Brown,

K. 2020). Instead of discarding accumulated

intellectual capital, the evolutionary approach aims

at identifying, refactoring, and recontextualizing

existing functionalities into modern architectural

patterns. This helps an enterprise ensure continuity

within operations while systematically addressing

the technical debt developed during a couple of

decades of system evolution (Brown, K. 2020).

Central to this is the principle of incremental

refactoring, wherein large monolithic applications

are systematically analyzed for discrete functional

components that need to be restructured as

independent, loosely coupled services. The

strangler pattern works by using an intercepting

façade layer that mediates requests to the legacy

system, intelligently routing traffic to either the

newly developed microservices or existing

monolithic components based on migration

progress 3. This has proven to be an effective

architectural strategy because it allows

development teams to target high-value business

capabilities for early migration, realizing early

value from the transformation effort while building

critical organizational competency in modern

development practices 3. This pattern works

effectively because it reduces migration risk

through the incremental testing of new services in

production environments ahead of retiring selected

legacy functionality 3.

Architectural considerations within this

evolutionary approach go beyond mere technical

restructuring. The domain-driven design principles

guide the decomposition of monolithic

applications to bounded contexts, making sure that

the resulting components will be aligned with

business domains rather than arbitrary technical

boundaries. Contemporary research in the area of

microservices architecture has made it clear that

successful implementations have to pay close

attention to service granularity, inter-service

communication patterns, data consistency

management, and deployment orchestration

170

Allam, S. Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

(Dragoni, N. et al., 2017). In this respect, quite a

few organizations adopting microservices

architectures have reported significant gains in

development velocity, system resilience, and

operational flexibility. These benefits only

materialize, however, when architectural principles

receive rigorous application and the organizational

structures adapt in order to support autonomous

service teams (Dragoni, N. et al., 2017).

Microservices architecture has validated the

evolutionary approach as a dominant paradigm for

distributed systems. This illustrates that loosely

coupled, independently deployable services offer

much better flexibility, scalability, and resilience

compared to their monolithic counterparts, as long

as the migration strategy respects the inherent

complexity of distributed system design (Dragoni,

N. et al., 2017). In this way, the transition from

monolithic to microservices architectures can be

achieved via strangler patterns, enabling

organizations to maintain business continuity

while gradually modernizing their respective

technical infrastructures and, thus, balancing

innovation imperatives with requirements for

operational stability (Dragoni, N. et al., 2017).

Table 2: Evolutionary Modernization Patterns (Brown, K. 2020; Dragoni, N. et al., 2017)

Pattern Component Implementation Approach Primary Benefit

Strangler Façade Request interception layer Progressive migration capability

Incremental Refactoring Component-by-component transformation Risk reduction through validation

Domain-Driven Design Business-aligned decomposition Maintainability enhancement

Microservices Architecture Loosely coupled services Deployment independence

API ENABLEMENT AS THE
FOUNDATION OF MODERNIZATION
Application Programming Interfaces are the very

building blocks of how IBM i systems are able to

fit into modern digital ecosystems. API

enablement changes these legacy applications from

isolated monoliths to integrated parts that can

communicate bidirectionally with contemporary

systems, mobile applications, web services, and

third-party platforms. Modernization through

seamless API integration addresses key business

challenges, such as real-time data access, cloud

integration, and mobile application development,

without requiring wholesale replacement of proven

business logic (Khatri, N. 2024). It is more than a

technological refresh but rather the repositioning

of enterprise assets as composable services that

can be orchestrated to meet evolving business

requirements, where organizations leverage REST

APIs and web services to expose IBM i

functionality and attain significantly improved

levels of agility in meeting market demands and

customer expectations (Khatri, N. 2024).

The technical enablement of APIs on IBM i

platforms usually adopts RESTful web services,

which became a de facto standard for system-to-

system integration because of their simplicity,

statelessness, and alignment with HTTP protocols.

The process of API enablement into an IBM i

environment can be done in several ways, such as

an Integrated Web Services Server that lets RPG

and COBOL be published as web services, without

change, open-source frameworks, and more

specific middleware that liberates the legacy

applications and puts them in front of the new

consumers. Since it uses standard HTTP methods,

including GET to access resources, POST to create

resources, PUT to update the entire resource,

PATCH to update a part, and DELETE to delete

resources, the REST architecture has become

predominant as it produces interfaces that are easy

to use and follow, and which are intuitive based on

web semantics. This exposure is done without

necessarily introducing fundamental alterations to

the preexisting business logic and maintaining the

stability and reliability attributes that have

historically characterized IBM i systems without

sacrificing patterns of integration that drive a great

diversity of modern digital endeavors.

Not only is REST an important consideration, but

also the various architectural patterns and security

frameworks are increasingly taken into

consideration for enterprise-grade API

implementations. In designing RESTful APIs, an

important aspect is resource-oriented architecture,

where URIs are used to identify resources, HTTP

methods to determine operations, and hypermedia

controls enable clients to navigate through

application state transitions (Masse, M. 2011).

Organizations that implement APIs need to

consider key design aspects such as conventions

for constructing URIs, which foster consistency

and discoverability; adequate use of HTTP status

codes that faithfully convey operation outcomes;

content negotiation mechanisms that enable

multiple forms of representation; and strategies for

caching that optimize network effectiveness

(Masse, M. 2011). Security considerations become

171

Allam, S. Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

paramount in API design and are concerned with

the implementation of authentication schemes,

authorization systems that implement fine-grained

access control, transport layer encryption through

HTTPS to protect data during transmission, and

input validation procedures that prevent injection

attacks and processing of malformed requests

(Masse, M. 2011). The principle of least privilege

underlines access control design, ensuring that a

given consumer receives only those permissions

needed to perform the legitimate operation while

keeping audit trails that support compliance

requirements and investigation of security

incidents (Masse, M. 2011). API enablement has

strategic value beyond immediate integration

needs. APIs that are well-designed are reusable

resources, which may be used by many

consumption channels without duplicating the

business logic, including mobile applications, web

portals, partner systems, and analytics platforms.

This reusability accelerates the creation of new

capabilities, provides uniformity in the application

of business rules across a broad range of

touchpoints, and empowers organizations to utilize

their investments in IBM i to digital transformation

efforts to enhance customer experience and

operations. Besides, the APIs also facilitate the

gradual transition to microservices architectures by

providing explicit contracts between components

of the system-enabling, over time, the replacement

of underlying implementations without impacting

the consumers and maintaining the backward

compatibility-crucially important to business

continuity where long-term transformation

initiatives are concerned.

Table 3: API Enablement Strategies (Khatri, N. 2024; Masse, M. 2011)

API Component Technical Implementation Strategic Value

REST Endpoints HTTP method mapping Standard web integration

Resource Orientation URI-based identification Intuitive interface design

Security Framework OAuth and HTTPS Enterprise-grade protection

Reusability Multi-channel support Accelerated capability development

DEVOPS INTEGRATION AND
MODERN DEVELOPMENT
PRACTICES
The integration of IBM i development workflows

with modern DevOps practices is a significant

cultural and technical transformation. Traditional

IBM i development environments have

conventionally worked within paradigms

characterized by centralized source management

on the host system, limited version control

capabilities, and manual deployment processes that

have created bottlenecks in software delivery

cycles (Eradani, 2024). The adoption of DevOps

principles, with a focus on automation, continuous

integration, continuous delivery, and collaborative

development practices, requires changes at the

very foundation of established workflows but

respects the peculiar characteristics of IBM i

platforms. The organizations moving toward the

adoption of DevOps methodologies must bridge

the gap in skills between traditional IBM i

developers proficient in RPG and COBOL and the

current state of development encompassing Git

version control, pipelines for CI/CD,

containerization concepts, and infrastructure

automation (Eradani, 2024). This transformation

entails comprehensive training programs and

gradual adoption approaches within which veteran

developers can gain contemporary skills while

tapping deep domain expertise and an

understanding of critical business logic locked

inside legacy applications (Eradani, 2024).

Source code management through distributed

version control systems, in particular Git, is a

foundational part of this transformation. In this

respect, modern IBM i development tooling

facilitates integration that synchronizes source

members from IBM i libraries with Git

repositories. Such integration allows developers to

apply industry-standard version control workflows

such as branching strategies, pull requests, and the

resolution of merge conflicts. The shift from

legacy source physical file management to Git-

based workflows demands knowledge in the

principles of distributed version control, along

with knowledge of branching models such as

GitFlow or trunk-based development, and

collaborative code review practices, which are

fundamentally different from the sequential

development approaches common in legacy

environments (Eradani, 2024). This approach

keeps the production source libraries stable while

allowing for experimentation and parallel

development in isolated branches, easing feature

flags, A/B testing capabilities, and progressive

deployment strategies that reduce the risk

associated with production releases (Eradani,

2024).

172

Allam, S. Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

The development of the Integrated Development

Environment has provided alternatives to the

green-screen editors as a tooling system for

developing programs. IBM i-specific extensions

are provided to the Visual Code software that

provides syntax highlighting, code navigation,

debugging, and easy integration with Git

repositories. This move, as a result of the adoption

of modern IDEs, represents a fundamental

paradigm shift among the developers who were

accustomed to command-line interfaces and source

entry utilities, and may demand investment in

training and managing change, to strike a balance

against the decades of established practices

(Eradani, 2024). This modern development

experience attracts newer talent who are more

familiar with contemporary tooling while

increasing productivity thanks to features such as

intelligent code completion, refactoring assistance,

and integrated testing frameworks, further aligning

the IBM i development practices with industry

standards evident in other technology stacks

(Eradani, 2024).

Continuous Integration and Continuous Delivery

pipelines are automated systems used to construct,

test, and deploy IBM i applications, which cut

down on manual work and human error and also

improve the speed at which they are delivered. The

DevOps Handbook suggests three foundational

principles of effective implementations of

DevOps: The First Way is based on a fast flow

between development and operations through

automated deployments and minimized batch

sizes, The Second Way is built on rapid feedback

loops, achieved through comprehensive

monitoring and testing, and The Third Way on

cultures of continuous experimentation and

learning (Kim, G. et al., 2016). Organizations that

adopt these principles experience transformative

improvements in software delivery performance:

high-performing technology organizations have

deployment frequencies 200 times faster, lead

times from commit to deploy that are 2,555 times

faster, and change failure rates that are three times

lower than those of low performers (Kim, G. et al.,

2016). These dramatic differentials in performance

translate directly into competitive advantage, with

organizations able to respond more rapidly to

market opportunities and customer needs while

sustaining superior reliability and stability (Kim,

G. et al., 2016).

The automation of system configurations, library

management, and the orchestration of deployment

are some of the Infrastructure as Code principles

applied to the IBM i environment. These cultural

features of DevOps adoption-collaboration among

both development and operations teams, blameless

post-mortems, and continuous improvement not

the secondary components to such an

implementation; successful transformations in

DevOps require executive support, investment in

tools and education, and simple rearrangements

around value streams instead of functional silos 8.

Table 4: DevOps Transformation Elements (Eradani, 2024; Kim, G. et al., 2016)

DevOps Practice Traditional Contrast Transformation Requirement

Version Control Host-based management Git distributed systems

Development Environment Green-screen editors Modern IDEs with extensions

Deployment Process Manual procedures Automated CI/CD pipelines

Organizational Culture Functional silos Cross-functional teams

CLOUD MIGRATION STRATEGIES
AND HYBRID ARCHITECTURE
PATTERNS
IBM i workload migrations to cloud environments

come with unique challenges and opportunities

that demand very thoughtful consideration of

application characteristics, data sovereignty

requirements, performance expectations, and cost

implications. There are multiple migration

pathways, from approaches based on Infrastructure

as a Service, which essentially relocate existing

systems to cloud-hosted environments, to more

transformative methods that decompose

applications into cloud-native services with

ongoing use of core IBM i functionality for

specialized workloads. According to in-depth

security and modernization research,

modernization has become an increasingly

important activity for IBM i organizations, with

survey data showing that organizations are under

increasing pressure to integrate their legacy

systems into contemporary cloud infrastructures

while sustaining the security postures and

compliance frameworks that have typified IBM i

environments up to this time (Fortra, 2024). This

research indicates that security considerations hold

center stage during journeys of modernization; for

example, 78% of respondents put security as the

top priority as they consider cloud migration

173

Allam, S. Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

strategies, while 64% cite concerns about

maintaining regulatory compliance during

transitions to either hybrid or cloud-native

architecture (Fortra, 2024).

Lift-and-shift migrations, in which entire IBM i

logical partitions migrate to cloud infrastructure

providers offering IBM Power Systems capacity,

are the least invasive type of migration. All the

large cloud providers currently have IBM i hosting

solutions that enable the organization to continue

with operations and still have the benefits in the

areas of cloud elasticity, geographic distribution,

and reducing disaster recovery. This kind of

practice suits well in circumstances where

significant change cannot be done immediately

because of limited resources, governmental

factors, or business continuity needs. Nevertheless,

lift-and-shift solutions are only capturing part of

the cloud value because applications remain

running in the patterns of traditional architecture

and fail to leverage the native benefits of the

cloud. The security study indicates that for lift-

and-shift approaches, organizations struggle to

adapt traditional security controls to the cloud,

with 56% of executives saying that it is difficult to

translate on-premises security policies into cloud

infrastructure and 48% concerned about having

visibility into activities within cloud-based systems

(Fortra, 2024).

Hybrid cloud architectures position IBM i systems

as components of broader distributed systems and

provide additional flexibility. These patterns

continue to leverage the IBM i platforms for core

transaction processing and maintaining systems of

record, adding new cloud-native services for

analytics, customer engagement, integration, and

other capabilities. The hybrid integration reference

architecture defines the end-to-end patterns for

integrating on-premises systems with cloud

services across multiple integration layers,

including API management gateways that secure,

throttle, and perform analytics duties, message-

oriented middleware that enables asynchronous

integration patterns, and data replication services

for bidirectional synchronization (IBM). APIs

provide a mechanism for integrations and

bidirectional communications between on-

premises IBM i systems and cloud-resident

components, and reference architecture highlights

the importance of consistent security models,

comprehensive monitoring across hybrid

topologies, and unified governance frameworks

that span on-premises and cloud-resident

components (IBM).

Data architecture considerations assume critical

importance in hybrid scenarios. Strategies must

address data synchronization, consistency

maintenance, and latency management across

distributed components. The Hybrid Integration

Architecture provides numerous data integration

patterns including synchronous request/reply to

meet immediate consistency needs, asynchronous

messaging to meet eventual consistency needs, and

bulk transfer of data via batch files; it is up to the

user to decide which of these to use based on the

toleration of latency, the volume of data, the

consistency requirements, and network bandwidth

considerations 10. Change data capture systems

enable near real-time replication of IBM i data to

cloud-based data warehouses or data lakes, to

support the needs of analytics and reporting

without affecting the performance of transactional

systems. The event streaming platforms enable

low-latency data distribution, which enables

business events to be responsive in real-time. To

this effect, the reference architecture suggests the

use of Apache Kafka or other event streaming

technologies that have been engineered to support

throughput capacity of over millions of events per

second and an order guarantee and exactly-once

delivery semantics 10.

Cloud-native IBM i services are starting to emerge

as another migration pathway, where vendors

provide a fully managed IBM i environment, with

automated scaling, patching, and operational

management. Such offerings minimize operational

overhead while sustaining application

compatibility. Organizations can focus on

enhancing the business logic rather than managing

the infrastructure, thus speeding up modernization

efforts, although security research indicates that

52% of organizations express concerns about

shared responsibility models in managed service

environments and require clear delineation of

security obligations between providers and

consumers (Fortra, 2024).

CONCLUSION
Gradual upgrading of IBM i systems provides a

sensible route for digital transformation—one that

honors the significant commercial value contained

in old systems while enabling modern features

needed for competitive positioning adoption.

Using the strangler application pattern and API

enablement, an evolutionary change framework

lets businesses smoothly move single applications

into distributed architectures without interrupting

operational continuity or throwing away decades

174

Allam, S. Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

of carefully honed corporate logic. Combining

DevOps techniques with distributed version

control, continuous integration pipelines, and

modern development environments transforms

traditional IBM i development methods into agile

ones, satisfying industry needs. A flexible

deployment option addressing performance,

security, and compliance needs, hybrid

architectures and lift-and-shift relocations provide

Every one of these methods demonstrates how

IBM i platforms can be turned from solitary,

legacy systems into an integrated component of a

current digital ecosystem—hence not only

maintaining their strategic role in enterprise

architecture but also providing mobile apps, cloud

services, and partner integrations. This being said,

incremental modernization reduces the risk of

transformation, shortens the time frame for return

on investment, and allows the business to receive

continuous value during the modernization journey

rather than at the end of it after complete system

replacement. Evidence presented throughout this

examination confirms the technical feasibility and

economic viability of evolutionary transformation

approaches based on striking a proper balance

between innovation imperatives and operational

stability requirements while preserving

institutional knowledge and proven business

processes constituting irreplaceable organizational

assets.

REFERENCES
1. Huntington, T. "2025 IBM i Marketplace

Survey Results." Fortra, (2024).

2. Availability Digest, "Migrating Legacy

Systems: Gateways, Interfaces, & the

Incremental Approach." (2007).

3. Brown, K. "Apply the Strangler Fig

Application pattern to microservices

applications." IBM Developer, (2020).

4. Dragoni, N., Giallorenzo, S., Lafuente, A. L.,

Mazzara, M., Montesi, F., Mustafin, R., &

Safina, L. "Microservices: yesterday, today,

and tomorrow." Present and ulterior software

engineering (2017): 195-216.

5. Khatri, N. "Modernize IBM i: Seamless

Integration Through APIs." IBM Community

Blog, (2024).

6. Masse, M. “REST API design rulebook:

designing consistent RESTful web service

interfaces." O'Reilly Media, Inc., (2011).

7. Eradani, "DevOps for IBM i: The Ultimate

Guide to Modernizing Developer Skills."

(2024).

8. Kim, G. et al., "The DevOps Handbook:

Introduction, Part I and Part II," IT Revolution

Press, (2016).

9. Fortra, "Download the 'State of IBM i Security

Study,' (2024).

10. IBM, Cloud Architecture Center, "Hybrid

Integration Reference Architecture," IBM

Cloud Architecture.

Source of support: Nil; Conflict of interest: Nil.
Cite this article as:

Allam, S. " Incremental Modernization: APIs, DevOps, and Cloud-Readiness in IBM i Environments." Sarcouncil

Journal of Engineering and Computer Sciences 4.11 (2025): pp 168-174.

