Sarcouncil Journal of Engineering and Computer Sciences

ISSN(Online): 2945-3585
Volume- 04| Issue- 11| 2025

&

[STAIR]C s

Research Article

Received: 10-10-2025| Accepted: 05-11-2025 | Published: 19-11-2025

Incremental Modernization: APIs, DevOps, and Cloud-Readiness in IBM i

Environments

Srinivas Allam
Core ITSLLC, USA

Abstract: The digital transformation of enterprise computing infrastructure requires IBM i platforms to evolve from isolated
legacy systems to integrated parts of modern digital ecosystems. This transformation is intended to meet the critical challenge of
preserving decades of proven business logic and institutional knowledge while making possible contemporary capabilities like API-
driven integration, DevOps automation, and cloud deployment flexibility. Anchored by the Strangler Application pattern, the
modular evolutionary approach allows for incremental porting of monolithic applications to microservices architectures without
impairing operational continuity. API enablement is a basic enabler for exposing IBM i functionality to mobile applications, cloud
services, and partner systems as RESTful interfaces and event-driven architectures. A combination of distributed version control
systems, continuous integration pipelines, and modern development environments changes the repetitive IBM i development
processes into agile collaborative development processes in accordance with industry best practices. The cloud migration strategies
that include lift-and-shift migrations, hybrid frameworks, as well as fully offered services offer companies the versatile mechanisms
to harness elastic capacity and geographic dispersion, besides catering to security and compliance requirements. Such a combination
of technological and methodological innovations establishes a sustainable architecture of evolutionary change that successfully
strikes a balance between innovation needs and the needs of operational stability to keep the IBM i platforms strategic to enterprise

architectures and support digital business agendas.

Keywords: IBM i Modernization, Api Enablement, Devops Integration, Cloud Migration, Microservices Architecture.

INTRODUCTION

The digital transformation requirement has put
legacy systems at a crossroads where they need to
evolve without losing the vital business value that
decades of operational perfection have
accumulated. The AS/400 or iSeries environments,
now called IBM i, constitute a major portion of
enterprise computing infrastructure, particularly in
financial services, manufacturing, and retail.
According to the recent marketplace survey data,
IBM i platform is still demonstrating incredible
resilience and strategic significance because 58
percent of organizations report that their
dependency on their IBM i systems has increased
in the last three years, and 21 percent of
organizations reported no change in their
dependence with the platform and only 8 percent
of organizations indicate the reduced dependency
on the platform (Huntington, T. 2025). Moreover,
the survey shows that 84% of organizations
consider their IBM i systems as critical or very
important to business operations, pointing to their
sustaining role in enterprise computing
architectures (Huntington, T. 2025). These systems
continue to run mission-critical workloads with
exceptional reliability, yet are under increasing
pressure to integrate into modern architectures,
support contemporary development practices, and
tap cloud computing capabilities that have become
fundamental for competitive positioning across
digital markets.

Traditional approaches to system modernization
have often advocated for wholesale replacement or
"rip-and-replace" strategies, approaches that carry
substantial ~ risk, require extensive capital
investment, and all too often result in project
failures or significant cost overruns. Empirical
analysis of legacy system migration projects
reveals that big-bang replacement methodologies
find profound challenges: the complexity of
reimplementing decades of accumulated business
logic, regulatory compliance rules, and operational
workflows is found to be far more difficult than
ever imagined (Availability Digest, 2007).
Organizations attempting wholesale system
replacements frequently find themselves facing a
situation where comprehensive requirements
documentation does not exist, institutional
knowledge resides with personnel approaching
retirement age, and subtle intricacies of business
rule implementations cannot be reduced to reverse
engineering attempts (Availability Digest, 2007).
The incremental approach to the migration of
legacy systems presents a very different paradigm,
recognizing that evolutionary transformation
through gateway interfaces and progressive
modernization reduces risk while maintaining
operational continuity (Availability Digest, 2007).
This approach allows organizations to preserve the
substantial investment in proven business logic
and incrementally introduce modern capabilities,

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 168
(CC BY-NC-ND 4.0) International License
*Corresponding Author: Srinivas Allam
DOI- https:/ /doi.org/10.5281/ zenodo.17652964

Allam, S. Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

avoiding catastrophic failures that have
characterized many high-profile big-bang
migration attempts in the literature across
industries (Availability Digest, 2007).

architectures, and the emerging role of artificial
intelligence in enhancing system reliability along
the steps of the modernization process. The aim is
to provide a theoretical and practical framework
for evolutionary transformation that would
preserve institutional knowledge while enabling
digital capabilities required for competitive
positioning in modern markets, on the basis of
empirical evidence that demonstrates the technical
feasibility and economic viability of graduated
transformation approaches.

The paper represents an academic investigation
into the principles, methods, and technology
enablers that form the basis of incremental
modernization strategies for IBM i platforms. It
looks at API enablement as a core building block,
integration with modern DevOps toolchains,
migration paths to the cloud and hybrid cloud

Table 1: IBM i Platform Characteristics and Migration Challenges (Huntington, T. 2025; Availability Digest,
2007)

Aspect Traditional Environment Modernization Challenge
System Criticality | Mission-critical operations Integration with contemporary architecture
Business Logic Decades of refined workflows | Preservation during transformation
Documentation Limited or absent Institutional knowledge capture
Personnel An aging expert workforce Knowledge transfer requirements

THE MODULAR EVOLUTIONARY
APPROACH TO LEGACY SYSTEM

TRANSFORMATION

The modular evolutionary approach represents a
paradigm shift from traditional modernization
strategies focused on disruptive replacement. This
methodology recognizes that a lot of significant
business logic, mechanisms for ensuring
regulatory compliance, and operational workflows
have been embedded in those legacy systems,
which have become refined with several years of
production use. The strangler application pattern
provides a structured approach to this
transformation; it describes how organizations can
incrementally migrate monolithic applications to a
microservices architecture through incremental
build-ups of new functionality around the core of
legacy systems and concurrently decommissioning
old components (Brown, K. 2020). It is an
effective pattern for IBM i environments where
total replacement of systems is fraught with
unacceptable business risk, given that it allows the
coexistence of new microservices with existing
monolithic applications through well-defined API
interfaces intercepting calls and progressively
routing them to modernized components (Brown,
K. 2020). Instead of discarding accumulated
intellectual capital, the evolutionary approach aims
at identifying, refactoring, and recontextualizing
existing functionalities into modern architectural
patterns. This helps an enterprise ensure continuity
within operations while systematically addressing
the technical debt developed during a couple of
decades of system evolution (Brown, K. 2020).

Central to this is the principle of incremental
refactoring, wherein large monolithic applications
are systematically analyzed for discrete functional
components that need to be restructured as
independent, loosely coupled services. The
strangler pattern works by using an intercepting
facade layer that mediates requests to the legacy
system, intelligently routing traffic to either the
newly developed microservices or existing
monolithic components based on migration
progress 3. This has proven to be an effective
architectural strategy because it allows
development teams to target high-value business
capabilities for early migration, realizing early
value from the transformation effort while building
critical organizational competency in modern
development practices 3. This pattern works
effectively because it reduces migration risk
through the incremental testing of new services in
production environments ahead of retiring selected
legacy functionality 3.

Architectural considerations within this
evolutionary approach go beyond mere technical
restructuring. The domain-driven design principles
guide the decomposition of monolithic
applications to bounded contexts, making sure that
the resulting components will be aligned with
business domains rather than arbitrary technical
boundaries. Contemporary research in the area of
microservices architecture has made it clear that
successful implementations have to pay close
attention to service granularity, inter-service
communication patterns, data consistency
management, and deployment orchestration

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 169
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

(Dragoni, N. et al., 2017). In this respect, quite a
few organizations adopting microservices
architectures have reported significant gains in
development velocity, system resilience, and
operational flexibility. These benefits only
materialize, however, when architectural principles
receive rigorous application and the organizational
structures adapt in order to support autonomous
service teams (Dragoni, N. et al, 2017).
Microservices architecture has validated the
evolutionary approach as a dominant paradigm for
distributed systems. This illustrates that loosely
coupled, independently deployable services offer

much better flexibility, scalability, and resilience
compared to their monolithic counterparts, as long
as the migration strategy respects the inherent
complexity of distributed system design (Dragoni,
N. et al., 2017). In this way, the transition from
monolithic to microservices architectures can be
achieved via strangler patterns, enabling
organizations to maintain business continuity
while gradually modernizing their respective
technical infrastructures and, thus, balancing
innovation imperatives with requirements for
operational stability (Dragoni, N. et al., 2017).

Table 2: Evolutionary Modernization Patterns (Brown, K. 2020; Dragoni, N. et al., 2017)

Pattern Component

Implementation Approach

Primary Benefit

Strangler Facade

Request interception layer

Progressive migration capability

Incremental Refactoring

Component-by-component transformation | Risk reduction through validation

Domain-Driven Design

Business-aligned decomposition

Maintainability enhancement

Microservices Architecture | Loosely coupled services

Deployment independence

API ENABLEMENT AS THE
FOUNDATION OF MODERNIZATION
Application Programming Interfaces are the very
building blocks of how IBM i systems are able to
fit into modern digital ecosystems. API
enablement changes these legacy applications from
isolated monoliths to integrated parts that can
communicate bidirectionally with contemporary
systems, mobile applications, web services, and
third-party platforms. Modernization through
seamless API integration addresses key business
challenges, such as real-time data access, cloud
integration, and mobile application development,
without requiring wholesale replacement of proven
business logic (Khatri, N. 2024). It is more than a
technological refresh but rather the repositioning
of enterprise assets as composable services that
can be orchestrated to meet evolving business
requirements, where organizations leverage REST
APIs and web services to expose IBM i
functionality and attain significantly improved
levels of agility in meeting market demands and
customer expectations (Khatri, N. 2024).

The technical enablement of APIs on IBM i
platforms usually adopts RESTful web services,
which became a de facto standard for system-to-
system integration because of their simplicity,
statelessness, and alignment with HTTP protocols.
The process of API enablement into an IBM i
environment can be done in several ways, such as
an Integrated Web Services Server that lets RPG
and COBOL be published as web services, without
change, open-source frameworks, and more
specific middleware that liberates the legacy

applications and puts them in front of the new
consumers. Since it uses standard HTTP methods,
including GET to access resources, POST to create
resources, PUT to update the entire resource,
PATCH to update a part, and DELETE to delete
resources, the REST architecture has become
predominant as it produces interfaces that are easy
to use and follow, and which are intuitive based on
web semantics. This exposure is done without
necessarily introducing fundamental alterations to
the preexisting business logic and maintaining the
stability and reliability attributes that have
historically characterized IBM i systems without
sacrificing patterns of integration that drive a great
diversity of modern digital endeavors.

Not only is REST an important consideration, but
also the various architectural patterns and security
frameworks are increasingly taken into
consideration for enterprise-grade API
implementations. In designing RESTful APIs, an
important aspect is resource-oriented architecture,
where URIs are used to identify resources, HTTP
methods to determine operations, and hypermedia
controls enable clients to navigate through
application state transitions (Masse, M. 2011).
Organizations that implement APIs need to
consider key design aspects such as conventions
for constructing URIs, which foster consistency
and discoverability; adequate use of HTTP status
codes that faithfully convey operation outcomes;
content negotiation mechanisms that enable
multiple forms of representation; and strategies for
caching that optimize network effectiveness
(Masse, M. 2011). Security considerations become

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 170
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

paramount in API design and are concerned with
the implementation of authentication schemes,
authorization systems that implement fine-grained
access control, transport layer encryption through
HTTPS to protect data during transmission, and
input validation procedures that prevent injection
attacks and processing of malformed requests
(Masse, M. 2011). The principle of least privilege
underlines access control design, ensuring that a
given consumer receives only those permissions
needed to perform the legitimate operation while
keeping audit trails that support compliance
requirements and investigation of security
incidents (Masse, M. 2011). API enablement has
strategic value beyond immediate integration
needs. APIs that are well-designed are reusable
resources, which may be wused by many
consumption channels without duplicating the

business logic, including mobile applications, web
portals, partner systems, and analytics platforms.
This reusability accelerates the creation of new
capabilities, provides uniformity in the application
of business rules across a broad range of
touchpoints, and empowers organizations to utilize
their investments in IBM i to digital transformation
efforts to enhance customer experience and
operations. Besides, the APIs also facilitate the
gradual transition to microservices architectures by
providing explicit contracts between components
of the system-enabling, over time, the replacement
of underlying implementations without impacting
the consumers and maintaining the backward
compatibility-crucially important to business
continuity where long-term transformation
initiatives are concerned.

Table 3: API Enablement Strategies (Khatri, N. 2024; Masse, M. 2011)

API Component

Technical Implementation

Strategic Value

REST Endpoints

HTTP method mapping

Standard web integration

Resource Orientation

URI-based identification

Intuitive interface design

Security Framework OAuth and HTTPS

Enterprise-grade protection

Reusability Multi-channel support Accelerated capability development
DEVOPS INTEGRATION AND tapping deep domain expertise and an
MODERN DEVELOPMENT understanding of critical business logic locked
PRACTICES inside legacy applications (Eradani, 2024).

The integration of IBM i development workflows
with modern DevOps practices is a significant
cultural and technical transformation. Traditional
IBM i development environments have
conventionally ~ worked within paradigms
characterized by centralized source management
on the host system, limited version control
capabilities, and manual deployment processes that
have created bottlenecks in software delivery
cycles (Eradani, 2024). The adoption of DevOps
principles, with a focus on automation, continuous
integration, continuous delivery, and collaborative
development practices, requires changes at the
very foundation of established workflows but
respects the peculiar characteristics of IBM i
platforms. The organizations moving toward the
adoption of DevOps methodologies must bridge
the gap in skills between traditional IBM i
developers proficient in RPG and COBOL and the
current state of development encompassing Git
version control, pipelines for CI/CD,
containerization concepts, and infrastructure
automation (Eradani, 2024). This transformation
entails comprehensive training programs and
gradual adoption approaches within which veteran
developers can gain contemporary skills while

Source code management through distributed
version control systems, in particular Git, is a
foundational part of this transformation. In this
respect, modern IBM i development tooling
facilitates integration that synchronizes source
members from IBM i libraries with Git
repositories. Such integration allows developers to
apply industry-standard version control workflows
such as branching strategies, pull requests, and the
resolution of merge conflicts. The shift from
legacy source physical file management to Git-
based workflows demands knowledge in the
principles of distributed version control, along
with knowledge of branching models such as
GitFlow or trunk-based development, and
collaborative code review practices, which are
fundamentally different from the sequential
development approaches common in legacy
environments (Eradani, 2024). This approach
keeps the production source libraries stable while
allowing for experimentation and parallel
development in isolated branches, easing feature
flags, A/B testing capabilities, and progressive
deployment strategies that reduce the risk
associated with production releases (Eradani,
2024).

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 171
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

The development of the Integrated Development
Environment has provided alternatives to the
green-screen editors as a tooling system for
developing programs. IBM i-specific extensions
are provided to the Visual Code software that
provides syntax highlighting, code navigation,
debugging, and easy integration with Git
repositories. This move, as a result of the adoption
of modern IDEs, represents a fundamental
paradigm shift among the developers who were
accustomed to command-line interfaces and source
entry utilities, and may demand investment in
training and managing change, to strike a balance
against the decades of established practices
(Eradani, 2024). This modern development
experience attracts newer talent who are more
familiar with contemporary tooling while
increasing productivity thanks to features such as
intelligent code completion, refactoring assistance,
and integrated testing frameworks, further aligning
the IBM i development practices with industry
standards evident in other technology stacks
(Eradani, 2024).

Continuous Integration and Continuous Delivery
pipelines are automated systems used to construct,
test, and deploy IBM i applications, which cut
down on manual work and human error and also
improve the speed at which they are delivered. The
DevOps Handbook suggests three foundational
principles of effective implementations of
DevOps: The First Way is based on a fast flow
between development and operations through

automated deployments and minimized batch
sizes, The Second Way is built on rapid feedback
loops, achieved through comprehensive
monitoring and testing, and The Third Way on
cultures of continuous experimentation and
learning (Kim, G. et al., 2016). Organizations that
adopt these principles experience transformative
improvements in software delivery performance:
high-performing technology organizations have
deployment frequencies 200 times faster, lead
times from commit to deploy that are 2,555 times
faster, and change failure rates that are three times
lower than those of low performers (Kim, G. et al.,
2016). These dramatic differentials in performance
translate directly into competitive advantage, with
organizations able to respond more rapidly to
market opportunities and customer needs while
sustaining superior reliability and stability (Kim,
G.etal., 2016).

The automation of system configurations, library
management, and the orchestration of deployment
are some of the Infrastructure as Code principles
applied to the IBM i environment. These cultural
features of DevOps adoption-collaboration among
both development and operations teams, blameless
post-mortems, and continuous improvement not
the secondary components to such an
implementation; successful transformations in
DevOps require executive support, investment in
tools and education, and simple rearrangements
around value streams instead of functional silos 8.

Table 4: DevOps Transformation Elements (Eradani, 2024; Kim, G. et al., 2016)

DevOps Practice Traditional Contrast | Transformation Requirement
Version Control Host-based management | Git distributed systems
Development Environment | Green-screen editors Modern IDEs with extensions
Deployment Process Manual procedures Automated CI/CD pipelines
Organizational Culture Functional silos Cross-functional teams

CLOUD MIGRATION STRATEGIES
AND HYBRID ARCHITECTURE
PATTERNS

IBM i workload migrations to cloud environments
come with unique challenges and opportunities
that demand very thoughtful consideration of
application characteristics, data sovereignty
requirements, performance expectations, and cost
implications. There are multiple migration
pathways, from approaches based on Infrastructure
as a Service, which essentially relocate existing
systems to cloud-hosted environments, to more
transformative ~ methods that decompose
applications into cloud-native services with

ongoing use of core IBM i functionality for
specialized workloads. According to in-depth
security and modernization research,
modernization has become an increasingly
important activity for IBM i organizations, with
survey data showing that organizations are under
increasing pressure to integrate their legacy
systems into contemporary cloud infrastructures
while sustaining the security postures and
compliance frameworks that have typified IBM i
environments up to this time (Fortra, 2024). This
research indicates that security considerations hold
center stage during journeys of modernization; for
example, 78% of respondents put security as the
top priority as they consider cloud migration

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 172
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

strategies, while 64% cite concerns about
maintaining regulatory compliance during
transitions to either hybrid or cloud-native
architecture (Fortra, 2024).

Lift-and-shift migrations, in which entire IBM i
logical partitions migrate to cloud infrastructure
providers offering IBM Power Systems capacity,
are the least invasive type of migration. All the
large cloud providers currently have IBM i hosting
solutions that enable the organization to continue
with operations and still have the benefits in the
areas of cloud elasticity, geographic distribution,
and reducing disaster recovery. This kind of
practice suits well in circumstances where
significant change cannot be done immediately
because of limited resources, governmental
factors, or business continuity needs. Nevertheless,
lift-and-shift solutions are only capturing part of
the cloud value because applications remain
running in the patterns of traditional architecture
and fail to leverage the native benefits of the
cloud. The security study indicates that for lift-
and-shift approaches, organizations struggle to
adapt traditional security controls to the cloud,
with 56% of executives saying that it is difficult to
translate on-premises security policies into cloud
infrastructure and 48% concerned about having
visibility into activities within cloud-based systems
(Fortra, 2024).

Hybrid cloud architectures position IBM i systems
as components of broader distributed systems and
provide additional flexibility. These patterns
continue to leverage the IBM i platforms for core
transaction processing and maintaining systems of
record, adding new cloud-native services for
analytics, customer engagement, integration, and
other capabilities. The hybrid integration reference
architecture defines the end-to-end patterns for
integrating on-premises systems with cloud
services across multiple integration layers,
including APl management gateways that secure,
throttle, and perform analytics duties, message-
oriented middleware that enables asynchronous
integration patterns, and data replication services
for bidirectional synchronization (IBM). APIs
provide a mechanism for integrations and
bidirectional communications between on-
premises IBM i systems and cloud-resident
components, and reference architecture highlights
the importance of consistent security models,
comprehensive ~ monitoring across hybrid
topologies, and unified governance frameworks
that span on-premises and cloud-resident
components (IBM).

Data architecture considerations assume critical
importance in hybrid scenarios. Strategies must
address data synchronization, consistency
maintenance, and latency management across
distributed components. The Hybrid Integration
Architecture provides numerous data integration
patterns including synchronous request/reply to
meet immediate consistency needs, asynchronous
messaging to meet eventual consistency needs, and
bulk transfer of data via batch files; it is up to the
user to decide which of these to use based on the
toleration of latency, the volume of data, the
consistency requirements, and network bandwidth
considerations 10. Change data capture systems
enable near real-time replication of IBM i data to
cloud-based data warehouses or data lakes, to
support the needs of analytics and reporting
without affecting the performance of transactional
systems. The event streaming platforms enable
low-latency data distribution, which enables
business events to be responsive in real-time. To
this effect, the reference architecture suggests the
use of Apache Kafka or other event streaming
technologies that have been engineered to support
throughput capacity of over millions of events per
second and an order guarantee and exactly-once
delivery semantics 10.

Cloud-native IBM i services are starting to emerge
as another migration pathway, where vendors
provide a fully managed IBM i environment, with
automated scaling, patching, and operational
management. Such offerings minimize operational
overhead while sustaining application
compatibility. Organizations can focus on
enhancing the business logic rather than managing
the infrastructure, thus speeding up modernization
efforts, although security research indicates that
52% of organizations express concerns about
shared responsibility models in managed service
environments and require clear delineation of
security obligations between providers and
consumers (Fortra, 2024).

CONCLUSION

Gradual upgrading of IBM i systems provides a
sensible route for digital transformation—one that
honors the significant commercial value contained
in old systems while enabling modern features
needed for competitive positioning adoption.
Using the strangler application pattern and API
enablement, an evolutionary change framework
lets businesses smoothly move single applications
into distributed architectures without interrupting
operational continuity or throwing away decades

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 173
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Eng. Com. Sci. vol-4, issue-11 (2025) pp-168-174

of carefully honed corporate logic. Combining
DevOps techniques with distributed version
control, continuous integration pipelines, and
modern development environments transforms
traditional IBM i development methods into agile
ones, satisfying industry needs. A flexible
deployment option addressing performance,
security, and compliance needs, hybrid
architectures and lift-and-shift relocations provide
Every one of these methods demonstrates how
IBM i platforms can be turned from solitary,
legacy systems into an integrated component of a
current digital ecosystem—hence not only
maintaining their strategic role in enterprise
architecture but also providing mobile apps, cloud
services, and partner integrations. This being said,
incremental modernization reduces the risk of
transformation, shortens the time frame for return
on investment, and allows the business to receive
continuous value during the modernization journey
rather than at the end of it after complete system
replacement. Evidence presented throughout this
examination confirms the technical feasibility and
economic viability of evolutionary transformation
approaches based on striking a proper balance
between innovation imperatives and operational
stability requirements while preserving
institutional knowledge and proven business
processes constituting irreplaceable organizational
assets.

REFERENCES

1.

2.

10.

Huntington, T. "2025 IBM i Marketplace
Survey Results." Fortra, (2024).

Availability Digest, "Migrating Legacy
Systems: Gateways, Interfaces, & the
Incremental Approach.” (2007).

Brown, K. "Apply the Strangler Fig
Application pattern to microservices

applications.”" IBM Developer, (2020).
Dragoni, N., Giallorenzo, S., Lafuente, A. L.,
Mazzara, M., Montesi, F., Mustafin, R., &
Safina, L. "Microservices: yesterday, today,
and tomorrow." Present and ulterior software
engineering (2017): 195-216.

Khatri, N. "Modernize IBM i: Seamless
Integration Through APIs." IBM Community
Blog, (2024).

Masse, M. “REST API design rulebook:

designing consistent RESTful web service
interfaces." O'Reilly Media, Inc., (2011).
Eradani, "DevOps for IBM i: The Ultimate
Guide to Modernizing Developer Skills."
(2024).

Kim, G. et al.,, "The DevOps Handbook:
Introduction, Part | and Part 11," 1T Revolution
Press, (2016).

Fortra, "Download the 'State of IBM i Security
Study,' (2024).

IBM, Cloud Architecture Center, "Hybrid
Integration Reference Architecture,” IBM
Cloud Architecture.

Source of support: Nil; Conflict of interest: Nil.

Cite this article as:

Allam, S. " Incremental Modernization: APIs, DevOps, and Cloud-Readiness in IBM i Environments." Sarcouncil
Journal of Engineering and Computer Sciences 4.11 (2025): pp 168-174.

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 174
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

