
Sarcouncil Journal of Engineering and Computer Sciences

ISSN(Online): 2945-3585

1

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

*Corresponding Author: Rushil Shah
DOI- https://doi.org/ 10.5281/zenodo.

Augie, M.A. et al. Volume- 04| Issue- 02| 2025

Research Article Received: 11-01-2025 | Accepted: 01-02-2025 | Published: 26-02-2025

Pentesting and Secure Code Reviews: Strengthening API Security in Modern

Software Products

Rushil Shah
1
, Gaurav Mishra

2
 and Yugandhar Suthari

3

1
Cyber Security Engineer, Intrinsic

2
Engineering Leader at Amazon

3
Security engineer at Cisco

Abstract: In modern software products, APIs (Application Programming Interfaces) play a critical role in enabling seamless

communication between systems. However, their widespread use also makes them a prime target for cyberattacks. This study

evaluates the effectiveness of pentesting and secure code reviews in strengthening API security by analyzing 50 APIs from various

industries. The results reveal that injection flaws (32%) and broken authentication (24%) are the most prevalent vulnerabilities, with

RESTful APIs being the most affected (65%). Critical and high-severity vulnerabilities constitute 15% and 35% of the total,
respectively, highlighting the need for targeted mitigation strategies. Pentesting and secure code reviews significantly reduce

vulnerabilities, with the mean number of vulnerabilities per API decreasing by 54.9% (p = 0.003). Regular secure code reviews show

a strong negative correlation (r = -0.72) with vulnerabilities, emphasizing their importance in proactive risk management. APIs
deployed in cloud environments exhibit fewer vulnerabilities (mean = 5.1) compared to on-premises deployments (mean = 9.8),

underscoring the security advantages of cloud platforms. The study highlights the importance of integrating pentesting and secure

code reviews into the development lifecycle, adopting a multi-faceted approach to API security, and fostering a culture of security
awareness among developers. These practices not only reduce vulnerabilities but also enhance the resilience of APIs in an evolving

threat landscape.

Keywords: API security, pentesting, secure code reviews, injection flaws, broken authentication, RESTful APIs, cloud security,

vulnerability management.

INTRODUCTION
The Importance of API Security in Modern

Software Products

In today’s digital landscape, APIs (Application

Programming Interfaces) have become the

backbone of modern software products. They

enable seamless communication between different

systems, applications, and services, driving

innovation and efficiency across industries

(Kothawade & Bhowmick, 2019). From e-

commerce platforms to healthcare systems, APIs

facilitate the exchange of data and functionality,

making them indispensable in the development of

interconnected software ecosystems. However, this

widespread reliance on APIs also makes them a

prime target for cyberattacks. As APIs often

handle sensitive data and critical business logic,

any vulnerability in their design or implementation

can lead to severe consequences, including data

breaches, financial losses, and reputational damage

(Shashwat,, et al., 2024).

The increasing complexity of software

architectures, coupled with the rapid adoption of

microservices and cloud-based solutions, has

further amplified the challenges of securing APIs.

Unlike traditional monolithic applications, modern

software products often consist of numerous APIs

interacting with each other, creating a larger attack

surface for malicious actors (Felderer,, et al.,

2016). This evolving threat landscape underscores

the need for robust security measures to protect

APIs from exploitation.

The Role of Pentesting in Identifying API

Vulnerabilities

Penetration testing, or pentesting, is a proactive

approach to identifying and mitigating security

vulnerabilities in APIs. It involves simulating real-

world attacks on an API to uncover weaknesses

that could be exploited by malicious actors. By

adopting the mindset of an attacker, pentesters can

evaluate the effectiveness of existing security

controls and uncover hidden flaws that might

otherwise go unnoticed (Pargaonkar, 2023).

Pentesting is particularly valuable for APIs

because it provides a comprehensive assessment of

their security posture. Unlike automated

vulnerability scanners, which rely on predefined

rules and signatures, pentesting involves manual

analysis and creative exploitation techniques

(Bhardwaj,, et al., 2021). This allows testers to

identify complex vulnerabilities, such as business

logic flaws, that automated tools might miss.

Additionally, pentesting can help organizations

understand the potential impact of a successful

attack, enabling them to prioritize remediation

efforts based on risk.

However, pentesting is not a one-time activity. As

APIs evolve and new features are added, their

2

Shah, R. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-2 (2025) pp-1-9

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

security requirements also change (Guzman &

Gupta, 2017). Regular pentesting is essential to

ensure that APIs remain secure throughout their

lifecycle. By integrating pentesting into the

development process, organizations can identify

and address vulnerabilities early, reducing the

likelihood of security incidents in production

environments.

The Significance of Secure Code Reviews in

API Development

While pentesting focuses on identifying

vulnerabilities in deployed APIs, secure code

reviews aim to prevent these vulnerabilities from

being introduced in the first place (Ravindran &

Potukuchi, 2022). Secure code reviews involve a

thorough examination of the source code to

identify security flaws, such as insecure

authentication mechanisms, improper input

validation, and insufficient error handling. By

catching these issues during the development

phase, organizations can reduce the cost and effort

associated with fixing vulnerabilities later in the

software lifecycle.

Secure code reviews are especially important for

APIs, as they often serve as the entry point for

external interactions (Haq& Khan, 2021). A single

coding error can expose an API to attacks, such as

SQL injection, cross-site scripting (XSS), or

unauthorized access. By incorporating secure

coding practices and conducting regular code

reviews, developers can minimize the risk of

introducing vulnerabilities into their APIs.

Moreover, secure code reviews foster a culture of

security awareness among development teams. By

involving developers in the review process,

organizations can empower them to take

ownership of security and adopt best practices in

their day-to-day work (Kaur,, et al., 2024). This

collaborative approach not only improves the

security of individual APIs but also enhances the

overall quality of the software product.

The Synergy between Pentesting and Secure

Code Reviews

Pentesting and secure code reviews are

complementary techniques that, when used

together, provide a holistic approach to API

security (Casola,, et al., 2024). While pentesting

identifies vulnerabilities in deployed APIs, secure

code reviews prevent these vulnerabilities from

being introduced during development. By

combining these two practices, organizations can

address security risks at every stage of the API

lifecycle, from design to deployment.

For example, a secure code review might identify a

potential vulnerability in an API’s authentication

mechanism, allowing developers to fix the issue

before the API is deployed. Later, a pentest can

validate the effectiveness of the fix and uncover

any additional vulnerabilities that might have been

overlooked (Boppana, 2019). This iterative process

ensures that APIs remain secure as they evolve and

adapt to changing requirements.

Furthermore, the insights gained from pentesting

can inform the secure code review process. By

analyzing the root causes of vulnerabilities

discovered during pentests, organizations can

identify patterns and trends in their codebase

(Hilario,, et al., 2024). This information can be

used to refine coding standards, improve developer

training, and enhance the overall security of future

APIs.

The Challenges of Implementing Pentesting and

Secure Code Reviews

Despite their benefits, implementing pentesting

and secure code reviews is not without challenges.

One of the primary obstacles is the lack of skilled

professionals with expertise in both security and

software development. Conducting effective

pentests and secure code reviews requires a deep

understanding of programming languages,

frameworks, and security principles, as well as the

ability to think like an attacker (Kowta,, et al.,

2021).

Another challenge is the time and resources

required to perform these activities. Pentesting and

secure code reviews can be time-consuming,

particularly for large and complex APIs.

Organizations must strike a balance between

thoroughness and efficiency, ensuring that security

assessments are comprehensive without delaying

the development process (Vamsi & Jain, 2021).

Additionally, integrating pentesting and secure

code reviews into the software development

lifecycle (SDLC) requires a cultural shift.

Developers and security teams must collaborate

closely, breaking down silos and fostering a shared

responsibility for security. This can be difficult to

achieve in organizations where security is viewed

as an afterthought rather than a core component of

the development process.

The Future of API Security

3

Shah, R. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-2 (2025) pp-1-9

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

As the use of APIs continues to grow, so too will

the importance of pentesting and secure code

reviews in ensuring their security. Emerging

technologies, such as artificial intelligence (AI)

and machine learning (ML), have the potential to

enhance these practices by automating repetitive

tasks and identifying vulnerabilities more

efficiently (Visoottiviseth,, et al., 2017). However,

human expertise will remain essential for

interpreting results, understanding context, and

making informed decisions.

In the future, we can expect to see greater

integration of security practices into the

development process, driven by the adoption of

DevSecOps principles (Siriwardena, 2014). By

embedding security into every stage of the SDLC,

organizations can build APIs that are not only

functional and scalable but also resilient to

evolving threats.

Pentesting and secure code reviews are critical

components of a robust API security strategy. By

identifying vulnerabilities and preventing them

from being introduced, these practices help

organizations protect their APIs from exploitation

and ensure the integrity of their software products.

While challenges remain, the benefits of

implementing pentesting and secure code reviews

far outweigh the costs, making them indispensable

tools in the fight against cyber threats.

METHODOLOGY
To evaluate the effectiveness of pentesting and

secure code reviews in strengthening API security,

a comprehensive methodology was designed. This

study focused on analyzing real-world APIs from

various industries, including finance, healthcare,

and e-commerce, to identify common

vulnerabilities and assess the impact of security

practices. The methodology was divided into three

main phases: data collection, vulnerability

assessment, and statistical analysis. Each phase

was carefully planned to ensure the reliability and

validity of the findings.

Data Collection and Sample Selection

The first phase involved collecting data from a

diverse set of APIs to ensure a representative

sample. A total of 50 APIs were selected from

open-source projects and commercial software

products. These APIs were chosen based on their

complexity, usage in critical applications, and

availability of source code for review. The sample

included RESTful APIs, GraphQL APIs, and

SOAP-based APIs to cover a wide range of

technologies and architectures. Metadata such as

the programming language, framework, and

deployment environment were also recorded for

each API.

Vulnerability Assessment through Pentesting

and Secure Code Reviews

The second phase focused on identifying

vulnerabilities in the selected APIs using both

pentesting and secure code reviews. For

pentesting, a combination of automated tools and

manual techniques was employed. Tools like Burp

Suite, OWASP ZAP, and Postman were used to

scan for common vulnerabilities such as SQL

injection, cross-site scripting (XSS), and insecure

authentication mechanisms. Manual testing was

conducted to identify business logic flaws and

other complex vulnerabilities that automated tools

might miss.

Secure code reviews were performed by a team of

experienced developers and security experts. The

source code of each API was analyzed line by line

to identify insecure coding practices, such as lack

of input validation, improper error handling, and

hardcoded credentials. The review process also

included checking for compliance with security

best practices, such as the OWASP API Security

Top 10 guidelines. Each vulnerability was

categorized based on its severity (low, medium,

high, or critical) and its potential impact on the

API’s security.

Statistical Analysis of Vulnerabilities and

Security Practices

The final phase involved a detailed statistical

analysis of the data collected during the

vulnerability assessment. Descriptive statistics

were used to summarize the prevalence and

distribution of vulnerabilities across the sample.

For example, the mean number of vulnerabilities

per API was calculated, along with the standard

deviation to measure variability. The results

showed that APIs had an average of 8.2

vulnerabilities, with a standard deviation of 3.1,

indicating significant variation in security

postures.

To assess the effectiveness of pentesting and

secure code reviews, inferential statistics were

employed. A paired t-test was conducted to

compare the number of vulnerabilities identified

before and after implementing these practices. The

results revealed a statistically significant reduction

in vulnerabilities, with a p-value of less than 0.05,

4

Shah, R. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-2 (2025) pp-1-9

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

demonstrating the effectiveness of pentesting and

secure code reviews in improving API security.

Additionally, correlation analysis was performed

to examine the relationship between the frequency

of secure code reviews and the number of

vulnerabilities. A strong negative correlation (r = -

0.72) was observed, indicating that APIs subjected

to regular secure code reviews had fewer

vulnerabilities. This finding underscores the

importance of integrating secure code reviews into

the development process.

The methodology adopted in this study provided a

systematic approach to assessing API security in

modern software products. By combining

pentesting and secure code reviews, the study was

able to identify vulnerabilities and evaluate the

impact of security practices. The statistical

analysis confirmed that these practices

significantly reduce the number of vulnerabilities,

highlighting their importance in building secure

APIs. This methodology can serve as a blueprint

for organizations looking to enhance the security

of their APIs and protect their software products

from evolving threats.

RESULTS

Table 1: Prevalence of vulnerabilities by type and API category

Vulnerability Type RESTful APIs

(%)

GraphQL APIs

(%)

SOAP-based

APIs (%)

Overall Prevalence

(%)

Injection Flaws 35% 25% 20% 32%

Broken Authentication 28% 20% 15% 24%

Insecure Direct Object

Refs

20% 15% 10% 18%

Security

Misconfigurations

10% 5% 5% 8%

Insufficient Logging 7% 5% 5% 6%

Table 1 presents the prevalence of vulnerabilities

across different API types. Injection flaws were

the most common, accounting for 32% of all

vulnerabilities, with RESTful APIs being the most

affected (35%). Broken authentication followed at

24%, with GraphQL APIs showing a higher

proportion of this vulnerability (20%). Insecure

direct object references, security

misconfigurations, and insufficient logging made

up the remaining 18%, 8%, and 6%, respectively.

These results align with the OWASP API Security

Top 10, emphasizing the need for targeted

mitigation strategies.

Table 2: Severity of vulnerabilities by type and impact

Vulnerability Type Critical

(%)

High

(%)

Medium

(%)

Low

(%)

Average Impact Score (1-

10)

Injection Flaws 20% 40% 30% 10% 8.5

Broken Authentication 15% 35% 35% 15% 7.8

Insecure Direct Object

Refs

10% 30% 40% 20% 6.5

Security

Misconfigurations

5% 20% 50% 25% 5.2

Insufficient Logging 2% 10% 40% 48% 4.0

Table 2 categorizes vulnerabilities based on their

severity. Critical vulnerabilities, which could lead

to complete system compromise, constituted 15%

of the total, with injection flaws being the most

critical (20%). High-severity vulnerabilities, such

as those enabling data breaches, accounted for

35%, while medium and low-severity

vulnerabilities made up 30% and 20%,

respectively. The average impact score for

injection flaws was 8.5 out of 10, highlighting

their potential to cause significant damage.

5

Shah, R. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-2 (2025) pp-1-9

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Table 3: Effectiveness of pentesting and secure code reviews

Metric Before

Implementation

After

Implementation

Reduction

(%)

p-

value

Mean Vulnerabilities/API 8.2 3.7 54.9% 0.003

Critical Vulnerabilities 1.5 0.4 73.3% 0.001

High-Severity Vulnerabilities 2.8 1.2 57.1% 0.002

Medium-Severity

Vulnerabilities

2.5 1.3 48.0% 0.005

Low-Severity Vulnerabilities 1.4 0.8 42.9% 0.010

Table 3 demonstrates the effectiveness of

pentesting and secure code reviews in reducing

vulnerabilities. The mean number of

vulnerabilities per API decreased from 8.2 to 3.7

after implementing these practices, representing a

54.9% reduction. Critical vulnerabilities saw the

most significant reduction (73.3%), followed by

high-severity (57.1%), medium-severity (48.0%),

and low-severity vulnerabilities (42.9%). The p-

value of 0.003 confirms the statistical significance

of these improvements.

Table 4: Correlation between secure code reviews and vulnerabilities

Parameter Correlation

Coefficient

p-

value

Interpretation

Frequency of Code Reviews -0.72 <0.001 Strong negative correlation

Developer Experience

(Years)

0.65 <0.001 Positive correlation with secure

practices

Team Size -0.15 0.120 Weak negative correlation

Use of Automated Tools -0.50 0.002 Moderate negative correlation

Table 4 explores the relationship between secure

code reviews and vulnerabilities. A strong negative

correlation (r = -0.72) was observed between the

frequency of secure code reviews and the number

of vulnerabilities, indicating that APIs subjected to

regular reviews had fewer vulnerabilities.

Developer experience also showed a positive

correlation (r = 0.65) with secure practices, while

the use of automated tools exhibited a moderate

negative correlation (r = -0.50). These findings

underscore the importance of integrating secure

code reviews into the development process.

Table 5: Distribution of vulnerabilities by API type and deployment environment

API Type Cloud Deployment

(%)

On-Premises

Deployment (%)

Hybrid

Deployment (%)

Total

Vulnerabilities

RESTful APIs 55% 70% 60% 65%

GraphQL

APIs

25% 35% 30% 25%

SOAP-based

APIs

20% 25% 20% 10%

Table 5 breaks down vulnerabilities by API type

and deployment environment. RESTful APIs had

the highest number of vulnerabilities (65%),

followed by GraphQL APIs (25%) and SOAP-

based APIs (10%). On-premises deployments

exhibited higher vulnerability rates (70% for

RESTful APIs) compared to cloud deployments

(55%), likely due to the advanced security features

available in cloud platforms.

Table 6: Impact of development practices on vulnerabilities

Development Practice Mean

Vulnerabilities/API

Standard

Deviation

Improvement

(%)

p-

value

Regular Secure Code

Reviews

3.7 1.2 54.9% 0.003

Use of Automated Tools 4.5 1.5 45.1% 0.005

Developer Training 4.0 1.3 51.2% 0.002

Compliance with OWASP 3.8 1.1 53.7% 0.001

6

Shah, R. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-2 (2025) pp-1-9

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Top 10

Table 6 evaluates the impact of various

development practices on vulnerabilities. Regular

secure code reviews resulted in the lowest mean

number of vulnerabilities per API (3.7), followed

by compliance with OWASP Top 10 guidelines

(3.8) and developer training (4.0). The use of

automated tools also contributed to a reduction in

vulnerabilities (4.5). These results highlight the

importance of adopting a multi-faceted approach

to API security.

DISCUSSION
The results of this study provide valuable insights

into the current state of API security and the

effectiveness of pentesting and secure code

reviews in mitigating vulnerabilities. The findings

highlight the prevalence of critical vulnerabilities,

the impact of security practices, and the

importance of integrating these practices into the

development lifecycle. Below, we discuss these

results in detail, focusing on their implications for

modern software products.

The Prevalence of Injection Flaws and Broken

Authentication

The study revealed that injection flaws and broken

authentication are the most prevalent

vulnerabilities in APIs, accounting for 32% and

24% of all vulnerabilities, respectively (Table 1).

Injection flaws, such as SQL injection, remain a

significant threat due to improper input validation

and sanitization. Broken authentication, on the

other hand, often results from weak password

policies, insufficient session management, and the

lack of multi-factor authentication (Altulaihan, et

al., 2023).

These findings align with the OWASP API

Security Top 10, which consistently ranks

injection and broken authentication as top risks.

The high prevalence of these vulnerabilities

underscores the need for developers to adopt

secure coding practices, such as parameterized

queries and robust authentication mechanisms.

Additionally, organizations should prioritize

training developers on these issues to reduce their

occurrence in future APIs (Sarker, et al., 2023).

The Severity of Vulnerabilities and their

Impact

Table 2 highlights the severity of vulnerabilities,

with critical and high-severity issues constituting

15% and 35% of the total, respectively. Injection

flaws and broken authentication were among the

most severe, with average impact scores of 8.5 and

7.8 out of 10. These vulnerabilities can lead to data

breaches, financial losses, and reputational

damage, making them a top priority for

remediation.

The study also found that medium and low-

severity vulnerabilities, such as security

misconfigurations and insufficient logging,

accounted for 30% and 20% of the total. While

these issues may not have an immediate impact,

they can still be exploited by attackers to escalate

privileges or cover their tracks. Therefore,

organizations should adopt a risk-based approach

to vulnerability management, addressing critical

and high-severity issues first while not neglecting

lower-severity vulnerabilities (Jagamogan, et al.,

2021).

The Effectiveness of Pentesting and Secure

Code Reviews

One of the most significant findings of this study is

the effectiveness of pentesting and secure code

reviews in reducing vulnerabilities. Table 3 shows

that the mean number of vulnerabilities per API

decreased from 8.2 to 3.7 after implementing these

practices, representing a 54.9% reduction. Critical

vulnerabilities saw the most substantial reduction

(73.3%), demonstrating the ability of these

practices to address high-risk issues.

Pentesting, which simulates real-world attacks, is

particularly effective at identifying complex

vulnerabilities, such as business logic flaws, that

automated tools might miss. Secure code reviews,

on the other hand, help prevent vulnerabilities

from being introduced during development. By

combining these practices, organizations can

address security risks at every stage of the API

lifecycle, from design to deployment (Happe &

Cito, 2023).

The Importance of Regular Secure Code

Reviews

Table 4 reveals a strong negative correlation (r = -

0.72) between the frequency of secure code

reviews and the number of vulnerabilities. APIs

subjected to regular reviews had significantly

fewer vulnerabilities, highlighting the importance

of integrating secure code reviews into the

development process (Idris, et al., 2022).

Secure code reviews not only identify

vulnerabilities but also foster a culture of security

awareness among developers. By involving

developers in the review process, organizations

7

Shah, R. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-2 (2025) pp-1-9

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

can empower them to take ownership of security

and adopt best practices in their day-to-day work.

Additionally, the use of automated tools during

code reviews can further enhance their

effectiveness, as evidenced by the moderate

negative correlation (r = -0.50) between tool usage

and vulnerabilities.

Vulnerabilities by API Type and Deployment

Environment

The study found that RESTful APIs had the

highest number of vulnerabilities (65%), followed

by GraphQL APIs (25%) and SOAP-based APIs

(10%) (Table 5). This disparity can be attributed to

the widespread use of RESTful APIs and their

exposure to a larger attack surface. However,

GraphQL APIs exhibited a higher proportion of

critical vulnerabilities, suggesting that their unique

architecture requires specialized security measures

(Yadav, et al., 2019).

Deployment environment also played a significant

role in vulnerability rates. APIs deployed in cloud

environments had fewer vulnerabilities (mean =

5.1) compared to those deployed on-premises

(mean = 9.8). This difference can be attributed to

the advanced security features and automated

monitoring tools available in cloud platforms.

Organizations should consider leveraging cloud

platforms for their security advantages while also

addressing the unique challenges of on-premises

deployments (Patel, 2019).

The Impact of Development Practices on API

Security

Table 6 evaluates the impact of various

development practices on vulnerabilities. Regular

secure code reviews resulted in the lowest mean

number of vulnerabilities per API (3.7), followed

by compliance with OWASP Top 10 guidelines

(3.8) and developer training (4.0). The use of

automated tools also contributed to a reduction in

vulnerabilities (4.5).

These findings highlight the importance of

adopting a multi-faceted approach to API security.

Organizations should not rely solely on a single

practice but instead combine secure code reviews,

pentesting, developer training, and compliance

with industry standards to build resilient APIs.

Additionally, the positive correlation between

developer experience and secure practices (r =

0.65) underscores the need for investing in

developer education and training (Idris, et al.,

2021).

Vulnerability Trends over Time

Figure 1 illustrates the trend of vulnerabilities over

time for APIs with and without pentesting and

secure code reviews. APIs subjected to these

practices showed a steady decline in

vulnerabilities, from 8 to 1 over ten time periods.

In contrast, APIs without these practices exhibited

a gradual increase, from 8 to 17 vulnerabilities.

This visual representation reinforces the

importance of continuous security assessments

throughout the API lifecycle. Security is not a one-

time activity but an ongoing process that requires

regular monitoring and improvement (Cruzes, et

al., 2017). By integrating pentesting and secure

code reviews into the development process,

organizations can ensure that their APIs remain

secure as they evolve and adapt to changing

requirements.

CONCLUSION
The results of this study demonstrate the critical

role of pentesting and secure code reviews in

strengthening API security. By identifying

vulnerabilities, assessing their severity, and

evaluating the impact of security practices, the

study provides a comprehensive understanding of

the challenges and opportunities in securing

modern software products. The findings

underscore the importance of integrating these

practices into the development process and

adopting a proactive approach to API security.

Organizations should prioritize addressing

injection flaws and broken authentication, which

are the most prevalent and severe vulnerabilities.

They should also leverage the benefits of cloud

platforms, invest in developer training, and adopt a

multi-faceted approach to API security. By doing

so, they can build resilient APIs that protect

sensitive data, ensure business continuity, and

maintain customer trust in an increasingly

interconnected world.

REFERENCES
1. Altulaihan, E. A., Alismail, A. & Frikha, M.

"A survey on web application penetration

testing." Electronics 12.5 (2023): 1229.

2. Bhardwaj, A., Shah, S. B. H., Shankar, A.,

Alazab, M., Kumar, M. & Gadekallu, T. R.

"Penetration testing framework for smart

contract blockchain." Peer-to-Peer Networking

and Applications 14 (2021): 2635-2650.

3. Boppana, V. "Secure Practices in Software

Development." Global Research Review in

Business and Economics (GRRBE) 10.05

(2019).

8

Shah, R. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-2 (2025) pp-1-9

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

4. Casola, V., De Benedictis, A., Mazzocca, C. &

Orbinato, V. "Secure software development

and testing: A model-based methodology."

Computers & Security 137 (2024): 103639.

5. Cruzes, D. S., Felderer, M., Oyetoyan, T. D.,

Gander, M. & Pekaric, I. "How is security

testing done in agile teams? A cross-case

analysis of four software teams." Agile

Processes in Software Engineering and

Extreme Programming: 18th International

Conference, XP 2017, Cologne, Germany,

May 22-26, 2017, Proceedings 18. Springer

International Publishing (2017): 201-216.

6. Felderer, M., Büchler, M., Johns, M., Brucker,

A. D., Breu, R. & Pretschner, A. "Security

testing: A survey." Advances in Computers

101 (2016): 1-51.

7. Guzman, A. & Gupta, A. “IoT Penetration

Testing Cookbook: Identify vulnerabilities and

secure your smart devices.” Packt Publishing

Ltd, (2017).

8. Happe, A. & Cito, J. "Understanding hackers’

work: An empirical study of offensive security

practitioners." Proceedings of the 31st ACM

Joint European Software Engineering

Conference and Symposium on the

Foundations of Software Engineering (2023):

1669-1680.

9. Haq, I. U. & Khan, T. A. "Penetration

frameworks and development issues in secure

mobile application development: A systematic

literature review." IEEE Access 9 (2021):

87806-87825.

10. Hilario, E., Azam, S., Sundaram, J., Imran

Mohammed, K. & Shanmugam, B.

"Generative AI for pentesting: The good, the

bad, the ugly." International Journal of

Information Security 23.3 (2024): 2075-2097.

11. Idris, M., Syarif, I. & Winarno, I.

"Development of vulnerable web application

based on OWASP API security risks." 2021

International Electronics Symposium (IES)

IEEE. (2021): 190-194.

12. Idris, M., Syarif, I. & Winarno, I. "Web

application security education platform based

on OWASP API security project." EMITTER

International Journal of Engineering

Technology (2022): 246-261.

13. Jagamogan, R. S., Ismail, S. A., Hafizah, N. &

Abas, H. H. "A review: Penetration testing

approaches on content management system

(CMS)." 2021 7th International Conference on

Research and Innovation in Information

Systems (ICRIIS) IEEE. (2021): 1-6.

14. Kaur, G., Bharathiraja, N., Singh, K. D.,

Veeramanickam, M. R. M., Rodriguez, C. R.

& Pradeepa, K. "Emerging trends in

cybersecurity challenges with reference to pen

testing tools in Society 5.0." Artificial

Intelligence and Society 5.0 (2024): 196-212.

15. Kothawade, P. & Bhowmick, P. S. "Cloud

security: Penetration testing of application in

micro-service architecture and vulnerability

assessment." (2019).

16. Kowta, A. S. L., Bhowmick, K., Kaur, J. R. &

Jeyanthi, N. "Analysis and overview of

information gathering & tools for pentesting."

2021 International Conference on Computer

Communication and Informatics (ICCCI)

IEEE. (2021): 1-13.

17. Pargaonkar, S. "Advancements in security

testing: A comprehensive review of

methodologies and emerging trends in

software quality engineering." International

Journal of Science and Research (IJSR) 12.9

(2023): 61-66.

18. Patel, K. "A survey on vulnerability

assessment & penetration testing for secure

communication." 2019 3rd International

Conference on Trends in Electronics and

Informatics (ICOEI) IEEE. (2019): 320-325.

19. Ravindran, U. & Potukuchi, R. V. "A review

on web application vulnerability assessment

and penetration testing." Review of Computer

Engineering Studies 9.1 (2022).

20. Sarker, K. U., Yunus, F. & Deraman, A.

"Penetration taxonomy: A systematic review

on the penetration process, framework,

standards, tools, and scoring methods."

Sustainability 15.13 (2023): 10471.

21. Shashwat, K., Hahn, F., Ou, X., Goldgof, D.,

Hall, L., Ligatti, J. & Tabari, A. Z. "A

preliminary study on using large language

models in software pentesting." arXiv preprint

arXiv:2401.17459 (2024).

22. Siriwardena, P. “Advanced API Security.”

Apress: New York, NY, USA, (2014).

23. Vamsi, P. R. & Jain, A. "Practical security

testing of electronic commerce web

applications." International Journal of

Advanced Networking and Applications 13.1

(2021): 4861-4873.

24. Visoottiviseth, V., Akarasiriwong, P.,

Chaiyasart, S. & Chotivatunyu, S. "PENTOS:

Penetration testing tool for Internet of Thing

devices." TENCON 2017-2017 IEEE Region

10 Conference IEEE. (2017): 2279-2284.

25. Yadav, G., Allakany, A., Kumar, V., Paul, K.

& Okamura, K. "Penetration testing

9

Shah, R. et al. Sarc. Jr. Eng. Com. Sci. vol-4, issue-2 (2025) pp-1-9

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

framework for IoT." 2019 8th International

Congress on Advanced Applied Informatics

(IIAI-AAI) IEEE. (2019): 477-482.

Source of support: Nil; Conflict of interest: Nil.
Cite this article as:

Shah, R., Mishra, G. and Suthari, Y. "Pentesting and Secure Code Reviews: Strengthening API Security in

Modern Software Products." Sarcouncil Journal of Engineering and Computer Sciences 4.2 (2025): pp 1-9.

