

Self-Healing Infrastructure for Security Services Using Anomaly-Aware Health Checks

Ramkinker Singh

Carnegie Mellon University, USA

Abstract: High availability, security and resilience have never been more important than they are in the ever-increasing complexity and criticality of digital infrastructures. Traditional monitoring and alert systems are less capable of the early discovery of more sophisticated forms of anomalies or automated responses to events, further increasing the risk of system outages and potential security threats. This paper will see the researcher intensively analyse self-healing infrastructures that incorporate anomaly-sensitive health checks alongside AI-driven monitoring tools to enhance the provision of security services. The paper focuses on current trends, challenges and technologies that are founded on the detection of anomalies, the repair of autonomous systems, and the predictive maintenance of high-security infrastructures. The current paper builds on groundbreaking advances in the spheres of microservices, federated learning, IoT, and machine learning-driven architectures to provide the foundation for upcoming implementation strategies aimed at creating smart and self-healing architectures.

Keywords: Self-healing infrastructure, anomaly-aware health checks, cybersecurity resilience, AI-driven monitoring.

INTRODUCTION

The increasing number of cyber threats, the growing complexity, and the necessity of real-time availability of computing systems all lead to the need for continuous security facilities in modern computing systems. Traditional infrastructures are usually reactive and require human intervention, which introduces latency and the risk of cascading failure. On the other hand, self-healing systems using anomaly-conscious health checks represent a novel approach to thinking about system reliability and security. These systems are not only effective in detecting abnormal behavior but also institute corrective actions on their own, which therefore reduces downtime as well as operational overheads.

Monitoring tools that are AI-based and microservice architectures have proven that their potential is significant when it comes to the real-time detection of anomalies. Granular observability and fault isolation are inherent due to the modular and decentralized nature of microservices. AIs trained with historical and real-time telemetry data have the potential to detect performance drifts, anomalies in specific configurations, or potential intrusions before they affect service delivery. Additionally, anomaly-sensitive health checks provide systems with the ability to assess their health state at runtime and invoke healing behaviors, such as restarting a service, scaling resources, or isolating a failed module (Podduturi, S. 2025).

The usage of anomaly detection in microservice ecosystems allows systems to act in response to

deviations in advance, leading to higher uptime and resilience. In one example, AI models trained on typical patterns of system behavior can theoretically detect anomalies through sudden changes in behavior, expressed as variations in CPU utilization, responsiveness, or request volume. This can be implemented within existing infrastructure systems so that anomalies like these can be detected, with systems self-diagnosing and restoring normalcy within the distributed environment to increase reliability (Podduturi, S. 2025).

Foundations of Anomaly-Aware Systems in Security Services

Vitality-conscious systems are connected to intelligent agents that are monitored constantly to collect telemetry from the infrastructure in order to recognize anomalies indicative of performance degradation or cyberattacks. These systems can be of great use in high-availability environments such as financial services, where unavailability or latency can significantly impact operations and financial outcomes. With the implementation of AI in health checks, systems are able to move beyond binary conditions of unhealthy or healthy states and instead assess levels of abnormality based on probabilistic models and anomaly scores (Dunsin, D).

A system that is sensitive to anomalies has been used successfully in payment processing environments to detect subtle anomalies, including suspicious transaction behavior or high latency spikes, where high reliability is strongly required.

Such systems not only issue alerts but also perform automated failover and containment procedures to isolate and remediate faults. Machine learning algorithms enhance anomaly-cognizant health checks by categorizing operational conditions as normal or abnormal, even when anomalies are previously unknown, thereby enabling the detection of and adaptation against zero-day attacks (Dunsin, D).

Self-healing in these systems is achieved through an orchestration layer, which coordinates detection and recovery. Once an anomaly has been identified, the orchestration layer determines the most suitable healing plan, which may include restarting a service, reverting to a stable version, or reallocating resources. This feedback loop forms a self-healing system and is enhanced through reinforcement learning and federated learning algorithms, which reduce detection error over time without compromising system security or user privacy (Dunsin, D).

Federated Learning and Sensor Health Monitoring

Another notable trend in the area of self-healing infrastructure is the federated learning and anomaly detection interface, particularly in systems prone to data corruption or sensor drift, such as aviation systems and industrial IoT systems. Federated learning enables models to be trained on multiple edge devices in a distributed manner without the centralization of sensitive data, thereby preserving privacy while also supporting real-time updates and personalization. In this regard, local models can be updated using the newest sensor dynamics in order to dynamically adapt anomaly-conscious health checks (Kabashkin, I. 2025).

Federated learning-based health monitoring systems have significant components in digital twin models. These are simulated depictions of physical assets that allow diagnostics and the active identification of faults to be performed. By comparing real-time sensor measurements with the anticipated behavior of the digital counterpart, systems can recognize hardware failures, data corruption, or security breaches. Federated models are able to trigger self-healing processes at the edge when such anomalies are detected, without necessarily sending data to central servers (Kabashkin, I. 2025).

Systems such as aviation, where safety and uptime are critical to missions, can use federated learning

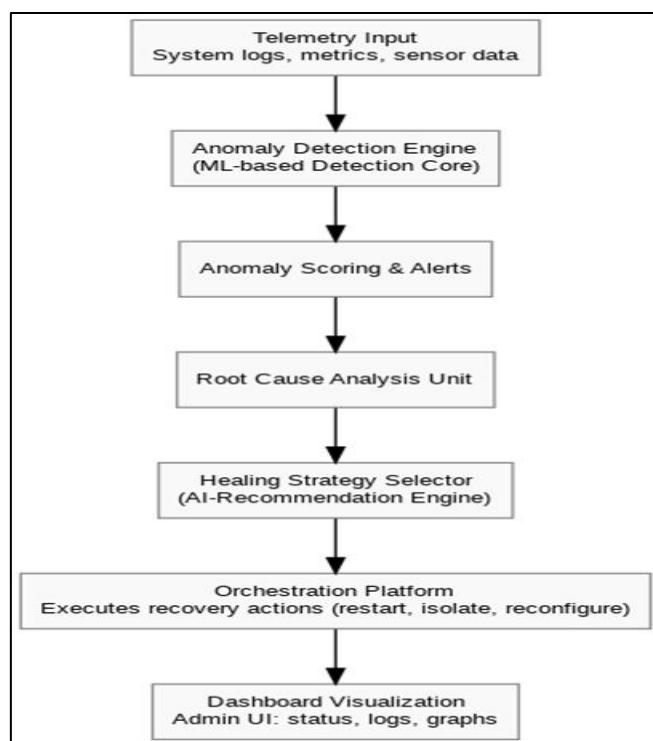
to establish a robust anomaly detection network even under sparse or adversarial connectivity. In addition, forgetting incorrect data points in the federated environment ensures that models do not reinforce erroneous behavior or sensor bias, thereby rendering anomaly detection systems more dependable and sustainable. Such distributed, adaptive intelligence can provide a substantial enhancement to the fault resilience of security services by integrating anomaly detection with self-healing and local decision-making (Kabashkin, I. 2025).

Security Vulnerabilities in Sensor-Based Systems

Although there is a positive impact on system reliability, anomaly-aware systems introduce new attack points, primarily in cyber-physical systems that utilize wireless sensor networks (WSNs). These sensors are also an important component of data collection in both healthcare and critical infrastructure contexts, and they can be targeted by various attacks such as spoofing, jamming, and man-in-the-middle attacks. These gaps can go unnoticed unless there is a powerful anomaly detector, which can lead to the deterioration of the credibility of the entire system. Security services should therefore adopt a combination of detection and defensive mechanisms at the sensor level (Priya, T. S., & Sridevi, R. 2025).

Anomaly-aware health checks of WSNs employ a multi-layered defense that monitors patterns of communication, data fidelity, and node behavior. After anomalies have been detected, such as unusual message frequency or the illegal use of communication channels, the system may flag the sensor node as compromised. Self-healing actions may include isolating the node, reconfiguring communication channels, or issuing warnings to administrators to perform manual validation. In addition, machine learning models trained on prior data can help distinguish between benign anomalies caused by environmental factors and malicious ones resulting from cyber threats (Priya, T. S., & Sridevi, R. 2025).

Security countermeasures assisted by anomaly-aware health checks often imply the use of lightweight cryptographic protocols, which enable the safe transfer of data without undue consumption of the already limited processing capabilities of sensor nodes. These include elliptic curve cryptography and hash-based authentication methods that are computationally inexpensive and can be integrated into embedded systems. Such


encryption, combined with real-time detection of abnormalities, enables self-healing in the form of preventing data manipulation and automatically responding to detected breaches (Priya, T. S., & Sridevi, R. 2025).

Dashboards and Real-Time Decision Support

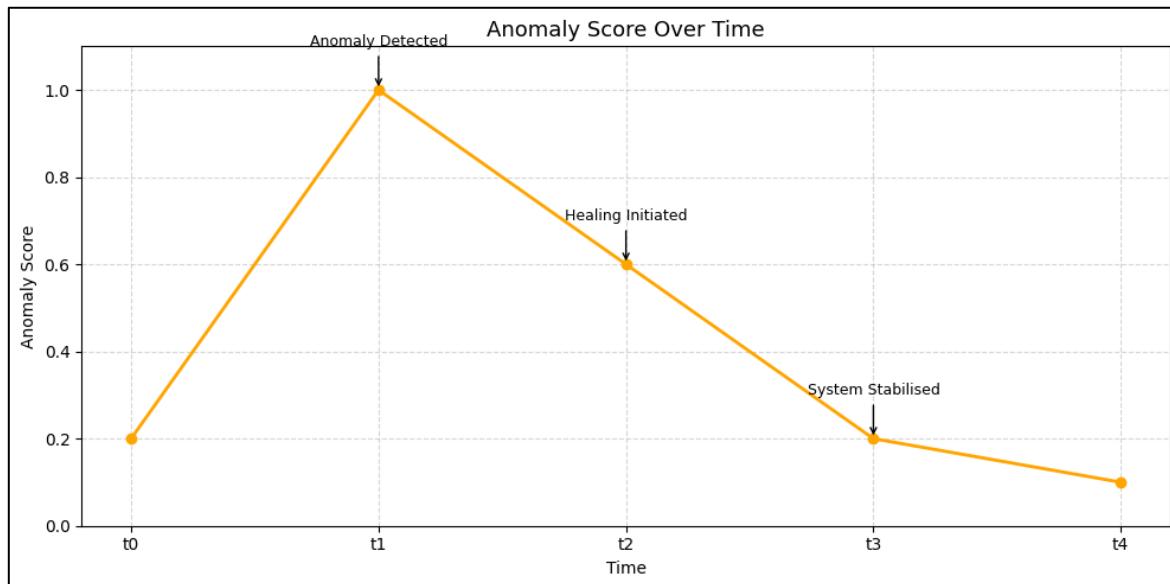
To run anomaly-conscious self-healing systems successfully, infrastructure health must be visible in real time. A key emphasis of this requirement is situational awareness provided by AI-based control dashboards for security teams, offering an overview of incidents and recommended responses to address them. Such dashboards also consume information from numerous sources, such as anomaly detectors, network logs, and health check APIs, and present a unified view of system status and threat posture (Ajibade, O. M.).

The ability to visualize anomaly detection findings in real time allows administrators to be aware of the intensity and scope of the issue at hand. These dashboards also support predictive analytics, enabling the identification of trends that may lead to system degradation or future attacks. Healing actions may also be directly triggered through dashboards by integrating with orchestration platforms, such as reconfiguring services, isolating endpoints, or updating security policies (Ajibade, O. M.).

One example of such a dashboard is presented below, showing a real-time anomaly detection interface with a list of affected nodes, levels of severity, and recommended actions to heal the affected nodes. The dashboard also includes anomaly progression graphs that track rises and falls in anomaly scores over time, providing insight into the effectiveness of healing measures.

Figure 1: Anomaly Detection and Healing Dashboard for Critical Infrastructure
Source: Adapted from (Ajibade, O. M)

The block diagram is a framework of end-to-end flow of how a self-healing mechanism monitors, analyses and responds to anomalies in real time. Given that the process begins with the intake of telemetry data, such as system logs, performance measurements, and sensor data, it then undergoes processing by an AI-based anomaly detection engine, which identifies non-normative behavior. The identified anomalies are then evaluated and prioritized through scoring and alerting


mechanisms, which are forwarded to a root cause analysis unit expected to identify the underlying problem. Based on this analysis, recommendations may be used to select corrective actions through an AI-driven recommendation engine. These measures are then enacted on the orchestration platform through service restarts, resource reassignments, or component isolation. The final output of the entire process is visualized through a comprehensive dashboard display, providing

administrators with actionable information, status updates, and performance history. This illustrates an autonomous, intelligent feedback loop that is essential for active resilience in infrastructure and operational continuity (Ajibade, O. M).

They are also instruments that enable data-driven decision-making by aligning anomalies with possible root causes and suggesting the most effective mitigation actions. As a result, response times are significantly reduced, as well as overall system resilience, due to proactive rather than reactive security measures.

Table 1: Comparative Overview of Healing Strategies Across Infrastructure Layers

Infrastructure Layer	Common Anomalies	Healing Strategy	Detection Mechanism
Application Layer	Latency spikes, memory leaks	Service restart, memory reallocation	AI-driven health checks (Podduturi, S. 2025; Dunsin, D)
Network Layer	Packet loss, unexpected traffic	Route reconfiguration, node isolation	Pattern analysis, anomaly scoring (Priya, T. S., & Sridevi, R. 2025; Ajibade, O. M)
Sensor Layer	Data inconsistency, silent failure	Node reboot, data filtering	Sensor data modeling (Kabashkin, I. 2025; Priya, T. S., & Sridevi, R. 2025)
Orchestration Layer	Misconfigurations, policy violations	Policy rollback, version control	Rule-based inference (Dunsin, D; Ajibade, O. M))

Figure 2: Anomaly Score Progression Before and After Healing

Graph showing anomaly score (y-axis) over time (x-axis), with a peak anomaly detected at t_1 and mitigation initiated at t_2 leading to resolution by t_3 .

Source: Based on concepts in (Dunsin, D; Ajibade, O. M)

It begins with the input of telemetry, such as system logs, performance metrics, and sensor data, which is fed into a machine learning-driven anomaly detection engine. The detected anomalies are rated and analyzed to determine the factors that caused them, enabling the system to select relevant healing options through an AI-driven decision engine. These strategies are then implemented using an orchestration platform that makes independent decisions such as service re-initiation, resource re-allocation, or isolating a compromised

component. Finally, the entire process is visually represented through a centralized dashboard interface that provides administrators with real-time updates, logs, and proposed interventions. The framework enables early anomaly identification and data-driven decision-making to enhance system resilience (Ajibade, O. M).

Secure Communication Protocols in Self-Healing Infrastructures

Secure communication protocols are significant to self-healing infrastructures, particularly in

scenarios where system components operate in distributed and volatile settings, such as drone networks or smart grids. The safety of routine exception handling in health inspections depends on lightweight encryption and key management. These protocols ensure that when a system automatically detects and restores itself after identifying an anomaly, it does so without resulting in data loss or encountering unauthorized access during or after the healing process (Sarkar, S. *et al.*, 2025).

A drone communication system should support reliable and secure real-time transmission of telemetry and control information. Anomaly-sensitive health checks continuously measure communication integrity by considering round-trip times, loss rates, and the authenticity of encryption keys. The self-healing infrastructure also responds when anomalies are detected by these checks, which may result from man-in-the-middle attacks or jamming, through measures such as channel hopping, dynamic re-keying, or routing through other trusted nodes (Sarkar, S. *et al.*, 2025).

Authentication is also employed by secure self-healing systems that is not only robust but also lightweight to meet the resource requirements of edge devices. Examples include symmetric key cryptography, where message authentication codes are based on hash functions (HMAC). These mechanisms help build trust during system recovery, ensuring that compromised nodes are not reintegrated into the infrastructure without verification. Additionally, anomaly-aware health checks ensure that all communications are validated against trust scores, which are adjusted over time based on behavior to assess the trustworthiness of each network member (Sarkar, S. *et al.*, 2025).

Such secure communication protocols are designed to function within a layered architecture where encryption, anomaly detection, and healing mechanisms are applied simultaneously. This combination ensures that the system is not directly exposed to additional vulnerabilities when autonomous fault recovery is employed. Awareness of security protocols therefore constitutes an important component of resilient infrastructure, enabling real-time responses to internal failures in addition to external attacks without jeopardizing the security posture (Sarkar, S. *et al.*, 2025).

Self-Adaptive IoT Systems in Anomaly-Aware Infrastructure

The concepts of self-healing infrastructure are further developed and flexibly adapted in the context of application to Internet of Things (IoT) frameworks. When device heterogeneity is high and connectivity is unreliable, IoT systems can effectively self-adapt by having the capability to detect and respond to anomalies without central coordination. These systems use AI-based models to learn the general behavior of associated devices and adjust operational thresholds and response strategies based on evolving usage patterns (Erazo-Garzón, L. 2024).

Anomaly-aware health checks are distributed tools in a self-adaptive IoT environment, used to observe device operation and local communication patterns. Local healing behavior, such as module resets or reconfiguration commands, is triggered automatically when anomalies such as sudden data spikes, repeated communication failures, or power drain are detected. It is important to note that these systems are not entirely grounded in centralized cloud-based decision-making. Instead, edge intelligence enables faster responses to events, with less overhead and greater scalability and resilience (Erazo-Garzón, L. 2024).

Such freedom of action is enabled through self-modelling structures that rely on knowledge of the system, environmental conditions, and historical information to assess current system states. These models apply reasoning mechanisms to select appropriate healing actions based on the nature and urgency of the anomaly. For example, minor failures may trigger low-impact mechanisms such as delayed rescheduling, whereas larger failures, such as persistent packet drops, may lead to service migration or firmware rollback (Erazo-Garzón, L. 2024).

One of the principal innovations in this regard is the feedback loop between anomaly detection and self-configuration. IoT devices that possess such features not only rectify anomalies but also modify their operational models to prevent recurrence. This cycle of learning and adaptation, achieved through a self-optimizing infrastructure built over time, assists in creating resilient systems aligned with broader goals of fault tolerance, energy efficiency, and data integrity in mission-critical applications (Erazo-Garzón, L. 2024).

Design Patterns in ML-Enabled Self-Healing Systems

Machine learning (ML) is an essential component of self-healing infrastructures, enabling systems to learn, detect, and react to potential situations without explicit programming. These systems also incorporate attributes such as scalability, maintainability, and adaptability due to the design patterns involved in the development of ML-enabled systems. Such patterns serve as architectural templates applied in developing anomaly-conscious components that are modular, testable, and reusable (Eriksson, E., & Olausson, J. 2024).

Design patterns of component-based architecture, such as the observer pattern and mediator pattern, are extensively used in self-healing systems that incorporate anomaly awareness. With such designs, separation of concerns can be achieved by isolating detection, analysis, and healing modules. The observer pattern is used, for example, to support continuous monitoring of health checks, whereby sensors or system components relay signals of state changes to the anomaly detection engine. The mediator pattern facilitates coordinated activity among distributed components to ensure that healing actions do not conflict or overstretch shared resources (Eriksson, E., & Olausson, J. 2024).

Another notable trend is the decision engine, which is often a rule-based or machine learning classifier. This component characterizes the nature of an anomaly and selects a suitable healing action. By combining these engines with orchestration platforms, it is possible to implement context-aware policy enforcement and recovery workflows. Design patterns are critical in helping to make the infrastructure flexible, enabling it to adapt to changes in the system environment or threat landscape (Eriksson, E., & Olausson, J. 2024).

Component models can also be useful in testing self-healing systems. By defining anomaly detectors and healing agents, developers can model various anomaly conditions and the behavior of healing agents using well-defined interfaces and expected behaviors, which can be simulated to test system responses before deployment. In addition, these models support reusability, as solutions trained to operate in a particular domain can be reused in another domain with minimal changes, thereby enhancing the interoperability and

scalability of self-healing solutions (Eriksson, E., & Olausson, J. 2024).

DISCUSSION

Self-healing infrastructure is equipped with anomaly-aware health checks, representing a paradigm shift in the approach to modern security service maintenance and protection. These systems can incorporate AI, federated learning, lightweight encryption, and component-based architectures, enabling them to self-diagnose and repair without compromising performance or security. These technologies are synergistic in that infrastructures are capable not only of monitoring and responding to threats but also of learning from incidents and adjusting their behavior over time.

These types of systems are likely to be helpful in environments where minimal downtime and high reliability are required. Financial services, aviation, and IoT ecosystems use anomaly-aware self-healing mechanisms to enhance operational continuity while reducing human dependency during incident response. However, several challenges remain, including the difficulty of developing models that can be adapted across domains, the possibility of false positives leading to inappropriate healing actions, and the overhead introduced by secure communication protocols on resource-limited devices.

Future research on this topic should consider hybrid designs that combine both supervised and unsupervised learning to generate more accurate anomaly classification. It is also necessary to establish common standards through which the effectiveness and efficiency of self-healing processes across different infrastructures can be measured. Additionally, explainable AI may be utilized to increase confidence and transparency in self-healing systems and autonomous decision-making, particularly in highly regulated domains where accountability is a critical consideration.

CONCLUSION

The paper has examined the role of anomaly-aware health checks in supporting self-healing infrastructure for security services. The interaction between AI, federated learning, secure communication, and design patterns in constructing intelligent systems capable of detecting, diagnosing, and autonomously responding to operational abnormalities has been highlighted. These systems ensure higher levels of protection, availability, and robustness for vital digital infrastructures through real-time

monitoring, adaptive learning, and decentralized decision-making. Despite remaining challenges, current research and practical trends strongly favor the development of self-healing mechanisms as a foundational element in future infrastructure design.

REFERENCES

1. Podduturi, S. "AI for Microservice Monitoring & Anomaly Detection." *International Journal of Emerging Trends in Computer Science and Information Technology* (2025): 192-211.
2. Dunsin, D. "Anomaly-Aware Ai Systems For High-Availability Payment Environments."
3. Kabashkin, I. "Federated unlearning framework for digital twin-based aviation health monitoring under sensor drift and data corruption." *Electronics* 14.15 (2025): 2968.
4. Priya, T. S., & Sridevi, R. "Security Vulnerabilities and Countermeasures for Wireless Sensor Networks in Cyber-Physical Systems." *Challenges and Solutions for Cybersecurity and Adversarial Machine Learning*. IGI Global Scientific Publishing, 2025. 415-448.
5. Ajibade, O. M. "AI-Powered Project Control Dashboards for Proactive Cybersecurity Event Response and Strategic Decision Support in Critical Infrastructure Programs."
6. Sarkar, S., Shafaei, S., Jones, T. S., & Totaro, M. W. "Secure communication in drone networks: A comprehensive survey of lightweight encryption and key management techniques." *Drones* 9.8 (2025): 583.
7. Erazo-Garzón, L., Gutiérrez, B., Illescas-Peña, L., & Bermeo, A. "Self-adaptive Internet of Things Systems: A Systematic Literature Review." *International Conference on Applied Technologies*. Springer, Cham, (2024).
8. Eriksson, E., & Olausson, J. "The Impact of Design Patterns on Quality Attributes in ML-Enabled Systems-A Multivocal Study of Component Models." (2024).

Source of support: Nil; **Conflict of interest:** Nil.

Cite this article as:

Singh, R. "Self-Healing Infrastructure for Security Services Using Anomaly-Aware Health Checks." *Sarcouncil Journal of Applied Sciences* 6.2 (2026): pp 1-7.