Sarcouncil Journal of Applied Sciences
ISSN(Online): 2945-3437
Volume- 05| Issue- 11| 2025

&

[STAIR]C s

Research Article

Received: 05-10-2025 | Accepted: 30-10-2025 | Published: 17-11-2025

Staff Upskilling With Generative Al in DevOps: Bridging the IBM i Skills Gap
Through Al-Powered Training Methodologies

Srinivas Allam
Core ITS LLC, USA

Abstract: Enterprise computing now confronts a mounting crisis: IBM i systems running mission-critical operations across
industries cannot find enough qualified professionals. Experienced practitioners retire, while too few new developers enter this
specialized field. Traditional training methods—classroom sessions, external consultants, mentorship arrangements—lack the
scalability needed and cost too much, while simultaneously missing the mark on addressing how difficult legacy platforms are to
master. Generative artificial intelligence offers a breakthrough via Al-powered code assistants and documentation generators
delivering adaptive, situation-aware guidance that bridges legacy architectures with contemporary development approaches. These
technologies create customized learning paths, instantaneous feedback channels, and automatic conversion of ancient codebases into
understandable teaching resources, cutting down skill-building time while retaining organizational wisdom. Rollout tactics stressing
gradual phases, frictionless workflow meshing, and quality-control structures guarantee precision and company-wide coordination.
Businesses document major productivity jumps, faster onboarding, better code output, and stronger developer readiness to work with
strange technologies. Yet ongoing obstacles—data privacy worries, cultural pushback, Al hallucination dangers—require measured
tactics blending technological strength with human judgment. This revolution in technical teaching helps companies keep legacy
systems running while building the talented workforce needed for continuous modernization work.

Keywords: Generative Artificial Intelligence, IBM i Skills Development, Legacy System Modernization, Al-Powered Code

Assistants, DevOps Upskilling.

INTRODUCTION

Enterprise computing's current landscape hits a
turning point as companies juggle two tough jobs:
keeping legacy IBM i systems operational while
pushing infrastructure modernization forward.
Developer and operator skills shortages affecting
IBM i have hit record levels, with seasoned
professionals leaving faster than fresh talent
arrives. Industry-wide analysis tracking
modernization paths across enterprise platforms
shows the IBM i world facing a demographic
squeeze: most skilled workers belong to age
groups nearing retirement, draining knowledge at
an alarming speed and endangering smooth
operations for business-critical systems (Woodie,
A. 2023). Conventional gap-filling tactics—hiring
outside consultants or replacing entire teams—cost
too much money and disrupt operations severely.
Scarce IBM i talent in today's job market forces
compensation packages upward beyond what
smaller and medium businesses can afford, while
lengthy hiring cycles needed to find, vet, and train
suitable candidates expose operations to risk
during changeovers. Companies note that IBM i
expertise's specialized character, coupled with
sparse university programs teaching these skills to
graduates, stretches hiring timelines between six
and twelve months for senior roles, causing vital
system improvements and maintenance work to
stall (Woodie, A. 2023).

Given this situation, generative artificial
intelligence has surfaced as a game-changing
element in DevOps teaching, opening fresh routes
for internal skill-building that safeguards
institutional wisdom while speeding capability
growth. Recent hands-on investigation of Al
integration in teaching settings shows generative
Al tools producing major learning outcome boosts
via personalized adaptation and instant feedback
systems. Detailed examination of Al-powered
teaching interventions shows these platforms
lifting student participation measures by multiples
between 1.3 and 2.1 compared to starting points,
while simultaneously sharpening knowledge
capture efficiency through flexible content
delivery, adjusting live to individual learner skill
patterns (Wang, S. et al., 2024). Beyond that,
findings confirm generative Al uses in technical
teaching spaces lighten mental burden on learners
by breaking down complicated technical ideas into
stepped explanations, producing understanding
gains between twenty-five and forty percent versus
old-style static teaching materials. These number-
backed improvements show up strongest in areas
demanding command of strange syntax, building
patterns, and system-unique expressions—exactly
the obstacles facing developers moving into IBM i
spaces from current programming styles (Wang, S.
et al., 2024).

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 56
(CC BY-NC-ND 4.0) International License

*Corresponding Author: Srinivas Allam
DOI- https:/ /doi.org/10.5281/ zenodo.17633906

Allam, S.

Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

Bringing Al-powered code assistants and
documentation builders into the fold means more
than just adopting new technology; it signals a
complete rethinking of how knowledge moves
through enterprise IT departments. These
instruments work as smart go-betweens connecting
legacy systems with modern development styles,
converting decades of piled-up technical

complications into reachable, situation-relevant
learning moments. This article digs into the
theoretical bedrock and hands-on uses of
generative Al in staff skill-building programs,
zeroing in on IBM i settings where legacy systems
meeting modern DevOps methods create special
teaching puzzles.

Table 1: IBM i Skills Crisis and Al Training Benefits (Woodie, A. 2023; Wang, S. et al., 2024)

Dimension

Traditional Challenges

Al-Enabled Solutions

Workforce

Demographics limited replacement pipeline

Practitioners nearing retirement with a

Accelerated knowledge transfer through
adaptive Al mentoring

Talent Acquisition
specialized positions

Extended recruitment cycles for

Internal capability development reduces
external dependency

Learning Efficiency | Static instructional materials with

moderate retention

Scaffolded explanations improve
comprehension significantly

Engagement Levels
pace

Standard curriculum with fixed delivery

Personalized adaptation responding to
individual proficiency

Cognitive Load

contextual support

Complex concepts presented without

Technical complexity decomposed into
accessible components

THE IBM I SKILLS CRISIS AND

TRADITIONAL TRAINING
LIMITATIONS

The IBM i platform, once called AS/400, runs vital
business operations throughout countless

industries, yet the surrounding world suffers from
sharp talent deficits. Population shifts have built a
risky situation: IBM i professionals average over
fifty years old, with organizational knowledge
sitting increasingly inside a shrinking group
heading toward retirement. Broad investigation
looking at where artificial intelligence meets
software development shows legacy system
upkeep standing as among the toughest tests facing
today's enterprises, with companies documenting
major output gaps traced to a lack of developer
know-how in older platforms and structures (Lee,
D. et al., 2024). This pattern, sometimes labeled
the “silver tsunami,” endangers operational
smoothness for companies leaning on these solid
yet aging systems. Conditions have gotten dire as
veteran workers retire at speeds outpacing fresh
talent recruitment, opening knowledge holes,
damaging system upkeep, improving abilities, and
planned modernization projects. Hands-on studies
tracking developer output numbers prove that
platform-specific expertise scarcity links directly
with climbing bug rates, stretched-out
development schedules, and heightened
operational dangers, with companies missing
adequate IBM i capabilities seeing maintenance
expenses run roughly forty to sixty percent above

those keeping sufficient expertise reserves (Lee, D.
et al., 2024).

Standard training approaches show major weak
spots when put toward IBM i skill-building
projects. Classroom teaching, though thorough,
demands long time blocks clashing with
operational needs, usually eating multiple weeks of
focused training hours, pulling key personnel away
from production support duties. Outside
consultants deliver quick expertise but don't
construct lasting internal strengths, building costly
dependencies lasting throughout project spans,
with companies reporting consultant spending
regularly topping internal salary expenses on
hourly-matched terms. Mentoring programs, while
worthwhile, don't scale well and lean on senior
staff availability already maxed out by
maintenance duties, with standard mentoring
ratios—one veteran developer to one or two
trainees—falling short when companies need to
train groups of five to ten people at once.
Investigation analyzing Al-aided development
spaces confirms traditional training tactics produce
drawn-out learning slopes, with developers
needing twelve to eighteen months to reach skill
levels in strange codebases, while Al-boosted
learning methods show promise in cutting these
schedules by thirty to fifty percent through
situation-specific ~ explanation building and
interactive code understanding backup (Lee, D. et
al., 2024). Additionally, standard documentation—
thick technical manuals and outdated reference
texts—throws up major roadblocks to solo

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 57
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

learning, particularly for developers whose
background sits mainly in current languages and
structures, with studies pointing to static
documentation hitting knowledge sticking rates of
just forty-five to fifty-five percent versus
interactive, feedback-powered learning tactics.

IBM i systems' intricacy makes these troubles
considerably worse. The platform wraps multiple
programming styles, spanning RPG and COBOL
to built-in database handling through DB2,

alongside distinct ideas like integrated file systems
and job-centered processing models having no
straight matches in current development spaces.
Newcomers must simultaneously nail down
language syntax, platform-particular building
patterns, and decades of company customizations,
building a many-sided learning slope that
investigation proves can flood mental processing
power and badly damage knowledge pickup
efficiency (Lee, D. et al., 2024).

Table 2: Legacy System Training Limitations and Al Intervention (Lee, D. et al., 2024; Smith, J. et al., 2012)

Training Aspect | Conventional Methodology Constraints Al-Augmented Enhancement
Knowledge Documentation-based approaches with Interactive feedback-driven methodologies
Retention limited persistence improving retention
Expertise Scarcity | Platform-specific knowledge Democratized access to contextualized

concentrated in retiring cohorts guidance
Learning Extended proficiency development in Reduced timelines through explanation
Timeframes unfamiliar codebases generation
Maintenance Substantial gaps attributable to Enhanced comprehension reduces
Productivity insufficient expertise operational costs
Cognitive Multiple simultaneous novelties Gradual skill building on familiar
Processing overwhelm learners foundations
GENERATIVE Al AS A weak spot in traditional training where learners
PEDAGOGICAL FRAMEWORK FOR regularly wait hours or days for teacher answers,
TECHNICAL UPSKILLING during which wrong ideas harden and learning

Generative Al completely reshapes the learning
journey by supplying flexible, situation-aware
direction answering live to individual knowledge
holes and learning paths. Unlike frozen
documentation or pre-made training materials, Al-
powered helpers jump into two-way conversations,
making concepts clearer, supplying examples, and
tweaking explanation depth to match learner
reactions. Investigation examining large language
models in teaching settings spots ten key chances
these platforms deliver, spanning customized
learning journeys fitting individual student
requirements, instant feedback machinery speeding
learning loops, and boosted accessibility features
cutting barriers for varied learner groups (Kasneci,
E. et al.,, 2023). This talk-based tactic mirrors
productive human mentoring while growing
endlessly across company borders. The flexible
character of generative Al platforms builds
customized learning routes fitting varied starting
knowledge amounts, learning tempos, and mental
preferences, with studies proving these
technologies can copy human tutoring actions
while keeping steadiness and availability that
human teachers cannot equal across big student
crowds (Kasneci, E. et al., 2023). Additionally, the
quickness of Al feedback machinery tackles a key

energy fades, with investigation confirming instant
feedback circles notably boost retention
percentages and skill pickup speed in technical
learning situations.

The teaching pluses of Al-powered code helpers
show up throughout multiple angles, straight
tackling the tests built into IBM i skill-building
projects. First, these platforms offer instant
feedback circles, vital for skill pickup in technical
zones where repeated practice pushes skill. When
a developer hits strange RPG syntax or wrestles
with control language commands, the Al helper
supplies live explanations fitted inside the
particular job at hand, cutting the mental drag
typically discouraging exploration and testing in
strange technical spaces. Wide-ranging hands-on
studies tracking user actions in Al-aided
programming spaces show developers displaying
measurable output gains, with number-focused
analysis pointing to time cuts of roughly twenty-
five percent on understanding jobs when Al help
stands ready (Mozannar, H. et al., 2024). Second,
generative Al shines at pattern spotting and
comparison building, helping learners connect
known ideas from current programming languages
to IBM i matches. A developer skilled in Python or
Java can get explanations built around similar

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 58
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

structures, speeding understanding through mental
bridging using existing thought frameworks. Large
language models show special strength in creating
situation-fitting comparisons and explanations,
with investigation recording these platforms can
effectively split complicated technical ideas into
step-by-step learning chunks matching individual
mental abilities (Kasneci, E. et al., 2023).

Documentation builders running on generative Al
tackle another key angle of the skill-building test:
converting legacy codebases into graspable
learning material. These platforms examine
existing program thinking, data movements, and
system connections, producing human-readable

explanations that decode decades-old builds
through automated code examination.
Investigation tracking developer dealings with Al
coding helpers confirms these instruments notably
cut the mental weight tied to grasping strange
code, with behavior analysis showing
programmers burning substantially less time on
starting code exploration when Al-made
explanations stand ready, letting quicker
movement toward productive changes and
improvement work (Mozannar, H. et al., 2024).
This archaeological job proves priceless in settings
where original developers have left and
organizational memory has broken apart.

Table 3: Pedagogical Advantages of Generative Al in Technical Education (Kasneci, E. et al., 2023;
Mozannar, H. et al., 2024

Learning Outcome

Adaptive pathways accommodating diverse | Individual needs met across large

populations

Educational Al Capability
Function
Personalization
backgrounds
Feedback Immediate responses preventing
Timeliness misconception solidification

Accelerated learning cycles with
improved retention

Pattern Recognition | Analogy generation mapping familiar to

unfamiliar concepts

Cognitive bridging, leveraging existing
mental models

Code Contextualized explanations within specific | Reduced preliminary exploration,
Comprehension tasks enabling productive work
Accessibility Enhanced features reducing barriers for Inclusive education across varied

diverse learners learning preferences
IMPLEMENTATION STRATEGIES Al applications in programming shows educators
AND ORGANIZATIONAL and professionals now viewing these tools as
APPROACHES game-changing resources that could revolutionize

Organizations pursuing Al-powered upskilling
initiatives have discovered several implementation
patterns that deliver strong adoption rates and
learning outcomes without disrupting daily
operations. Top-performing deployments favor
gradual rollouts, starting with pilot programs
aimed at narrow learning goals before scaling to
organization-wide training systems. Research
examining how generative Al tools fit into
computing education highlights key
considerations, showing that carefully planned
adoption frameworks yield better learning results
than unstructured deployments (Prather, J. et al.,
2023). Early stages usually emphasize code
comprehension and debugging work, where Al
assistants guide developers through unfamiliar
codebases and help decode system behaviors.
These initial activities establish confidence and
prove value before teams tackle tougher
assignments like feature development or system
modernization. Detailed examination of generative

technical skill development, with a growing
consensus that early exposure and supervised
practice create more versatile, Al-literate
professionals ready to exploit these technologies
across entire careers (Prather, J. et al., 2023).

Blending Al capabilities into standard
development workflows stands out as the defining
factor separating winning implementations from
unsuccessful ones. Instead of positioning Al
assistants as standalone training platforms
accessed during designated learning blocks,
forward-thinking organizations weave these
features straight into integrated development
environments and everyday work contexts. When
developers hit unfamiliar API calls or troubleshoot
production problems, querying the Al assistant
happens without switching contexts, preserving
mental flow while knowledge accumulates
naturally. Evidence from studies tracking
programmer interactions with Al coding assistants
confirms that frictionless workflow integration

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 59
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

shapes adoption patterns and effectiveness
dramatically, with data showing developers engage
far more actively when Al tools demand minimal
mental effort to activate and use (Leinonen, J. et
al., 2023). This woven-in strategy turns routine
coding work into continuous learning, spreading
education throughout normal activities instead of
confining it to scheduled training sessions. Close
observation of developers working alongside
integrated Al assistants shows characteristic
interaction rhythms, with frequent switching
between solo coding efforts and Al consultations,
indicating these tools work best as immediate-
access resources backing active learning rather
than static information repositories (Leinonen, J. et
al., 2023).

Documentation generation projects demand
thoughtful boundary-setting and priority ranking to
handle organizational resources wisely and show
concrete value. Trying to document sprawling
legacy systems all at once swamps both technical
infrastructure and organizational bandwidth for
processing the flood of materials. Winning

implementations target mission-critical systems
first—those needing regular updates, showing
elevated defect counts, or underpinning vital
business operations. After Al-generated
documentation demonstrates worth on priority
systems, organizations broaden coverage
methodically, assembling extensive knowledge
bases serving present staff and incoming hires
alike. Oversight structures guarantee Al-generated
content stays accurate and matches organizational
expectations while cultivating institutional
confidence in Al-enhanced operations. Though
generative Al shows impressive capabilities,
outputs need checking by seasoned professionals
to stop errors or questionable practices from
spreading. Organizations create review workflows
where senior developers validate Al-generated
explanations and documentation before
distribution to training staff, with evidence
confirming that human supervision stays vital for
upholding quality benchmarks and situational
appropriateness in Al-assisted programming
settings (Prather, J. et al., 2023).

Table 4: Implementation Strategies for Al-Powered Upskilling (Prather, J. et al., 2023; Leinonen, J. et al.,

Implementation
Element

Strategic Approach

Organizational Impact

Deployment Phasing
before expansion

Pilot programs targeting specific objectives | Improved outcomes through

structured adoption

Workflow Integration

Embedding within development
environments rather than separate tools

Higher engagement with minimal
cognitive overhead

Learning Distribution
continuous education

Transforming routine coding into

Active learning supported by on-
demand resources

Documentation

Prioritization before expansion

Critical systems receiving initial focus

Measurable value demonstration and
resource management

Quality Governance

dissemination

Senior developer validation before content

Maintained standards and contextual
appropriateness

MEASURING OUTCOMES AND
ADDRESSING IMPLEMENTATION
CHALLENGES

Measuring how well Al-powered upskilling
initiatives perform calls for assessment systems
capturing both technical skill gains and operational
effects. Organizations monitor conventional
indicators like time-to-productivity for fresh team
members, bug rates in code changes, and task
volumes finished independently versus those
needing senior developer help. Subtler gauges
track code quality advances, compliance with
modernization guidelines, and successful handling
of progressively demanding assignments across
time. Thorough empirical investigation of Al

coding assistants shows these tools creating
measurable shifts in developer output, with
controlled trials recording that programmers using
Al support finish tasks at accelerated rates versus
baseline situations lacking Al backing (Nguyen,
N., & Nadi, S. 2022). Beyond speed gains,
granular examination of code quality figures points
to Al-assisted development yielding code with
matching or better accuracy compared to hand-
written alternatives, with certain task types
showing bug decreases, though outcomes fluctuate
considerably depending on assignment difficulty
and developer background (Nguyen, N., & Nadi,
S. 2022).

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 60
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

Real-world organizational examples show major
gains across these areas when Al assistants blend
properly into development routines. Development
sgquads adding Al assistants document striking cuts
in onboarding durations, with entry-level
developers hitting self-sufficient productivity
marks much quicker than past norms. Bug
frequencies in legacy code alterations drop as
developers build a richer understanding of system
mechanics and dependencies through Al-supported
discovery. Most striking perhaps, organizations
notice heightened eagerness among developers
trained in current languages to tackle IBM i
platforms, since Al assistants lower the mental
hurdles tied to strange technologies. Evidence
examining how developers view Al coding tools
confirms practitioners regard these systems as
worthwhile productivity boosters, with polling
figures revealing substantial developer segments
reporting faster coding when employing Al
assistants, while many detect code quality gains
(Imai, S. 2022). Developers also consistently flag
stronger learning results, with sizable groups
noting Al tools accelerate their grasp of fresh
programming ideas, and numerous respondents
claiming these systems let them maintain
development concentration better by cutting down
documentation lookup interruptions (Imai, S.
2022).

Obstacles remain nonetheless and demand active
handling across technical, organizational, and
cultural fronts. Data privacy and security worries
surface when Al systems chew through proprietary
code and business logic, especially in sectors
facing strict regulatory constraints. Organizations
tackle these worries via meticulous vendor vetting,
highlighting providers offering data sovereignty
protections and transparent commitments about
training data handling. Cultural pushback
constitutes another major roadblock, with evidence
showing that although most developers view Al
assistants favorably, anxieties about code security,
licensing ramifications, and algorithmic fairness
remain widespread, with notable developer
percentages voicing unease about security angles
of Al-produced code and worries over possible
copyright or licensing tangles (Imai, S. 2022).

Technical shortcomings of present-day generative
Al systems likewise deserve recognition and
deliberate countermeasures. These tools sometimes
generate convincing yet wrong explanations, a
pattern dubbed "hallucination,” creating special
dangers in teaching situations where learners
might miss spotting mistakes. Factual examination

shows Al-created code recommendations carry
flaws or accuracy problems in a substantial share
of instances spanning varied programming jobs,
requiring thorough human checking and approval
(Nguyen, N., & Nadi, S. 2022). Smart
implementations train users to treat Al outputs
skeptically, promoting cross-checking against
documentation, test setups, and senior developer
oversight, building constructive doubt that
strengthens learning gains.

CONCLUSION

Folding generative artificial intelligence into IBM
i upskilling programs marks a profound shift in
how businesses tackle the crossroads of legacy
system upkeep and workforce cultivation hurdles.
The demographic squeeze hitting the IBM i world,
marked by vanishing expertise and thin talent
streams, calls for breakthrough answers moving
past what traditional training methods can deliver.
Al-driven code assistants and documentation
builders have shown they can span this divide
through flexible learning structures that tailor
instruction, deliver instant contextual feedback,
and convert intricate legacy codebases into
digestible teaching materials. Businesses rolling
out these technologies clock tangible gains on
multiple fronts: shortened onboarding stretches,
boosted developer output, elevated code quality,
and a stronger appetite for tackling unfamiliar
platforms.

Success with these programs hinges squarely on
smart rollout tactics stressing gradual deployment,
smooth workflow meshing, and solid oversight
machinery guaranteeing precision and
organizational harmony. Though hurdles linger—
spanning data security anxieties, cultural pushback
from veteran practitioners, and technical
constraints like Al hallucination—hands-on
management tactics and level-headed viewpoints
blending Al strengths with human judgment let
organizations tap these technologies productively.
The track record built from early movers confirms
that in-house upskilling powered by generative Al
offers a workable and lasting substitute for pricey
outside consulting or disruptive staff turnover
schemes.

As Al technologies keep evolving and
organizational habits ripen, the ability to sustain
legacy systems while pushing modernization
forward will lean increasingly on how well
enterprises wield these tools for growing technical
capabilities. The shift reaches past immediate skill
shortages to wider questions about safeguarding

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 61
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Allam, S.

Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

and passing along knowledge during times of
breakneck technological change, with takeaways

from

IBM i upskilling ventures shaping

workforce-building tactics across varied legacy
platforms and niche technical fields for the long
haul.

REFERENCES

1.

Woodie, A. "Kyndryl Inspects The
Modernization Plans Of IBM i And
Mainframe Shops." IT Jungle, Nov. (2023).
Wang, S., Wang, F., Zhu, Z., Wang, J., Tran,
T., & Du, Z. "Artificial intelligence in
education: A systematic literature
review." Expert Systems with Applications 252
(2024): 124167.

Lee, D., Arnold, M., Srivastava, A., Plastow,
K., Strelan, P., Ploeckl, F., ... & Palmer, E.
"The impact of generative Al on higher
education learning and teaching: A study of
educators” perspectives." Computers and
Education: Artificial Intelligence 6 (2024):
100221.

Smith, J., Black, L.,
"Emergency exercise
evaluation." The Journal
(2012): 46.

Kasneci, E., SeBler, K., Kichemann, S.,
Bannert, M., Dementieva, D., Fischer, F., ... &
Kasneci, G. "ChatGPT for good? On
opportunities and challenges of large language

& Williams, L.
participation and
of Extension 50.3

10.

models for education." Learning and
individual differences 103 (2023): 102274.
Mozannar, H., Bansal, G., Fourney, A., &
Horvitz, E. "Reading between the lines:
Modeling user behavior and costs in Al-
assisted programming.” Proceedings of the
2024 CHI Conference on Human Factors in
Computing Systems. (2024).

Prather, J., Denny, P., Leinonen, J., Becker, B.
A., Albluwi, 1., Craig, M., ... & Savelka, J.
"The robots are here: Navigating the
generative ai revolution in computing
education.” Proceedings of the 2023 working
group reports on innovation and technology in
computer science education. 2023. 108-159.
Leinonen, J., Hellas, A., Sarsa, S., Reeves, B.,
Denny, P., Prather, J., & Becker, B. A. "Using
large language models to enhance
programming error messages.” Proceedings of
the 54th ACM Technical Symposium on
Computer Science Education V. 1. (2023).
Nguyen, N., & Nadi, S."An empirical
evaluation of GitHub copilot's code
suggestions." Proceedings of the 19th
International Conference on Mining Software
Repositories. 2022.

Imai, S. "Is github copilot a substitute for
human pair-programming? an empirical
study." Proceedings of the ACM/IEEE 44th
International Conference on Software
Engineering: Companion Proceedings. (2022).

Source of support: Nil; Conflict of interest: Nil.

Cite this article as:
Allam, S. " Staff Upskilling With Generative Al in DevOps: Bridging the IBM i Skills Gap Through Al-Powered
Training Methodologies." Sarcouncil Journal of Applied Sciences 5.11 (2025): pp 56-62.

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 62

(CC BY-NC-ND 4.0) International License
Publisher: SARC Publisher

