
Sarcouncil Journal of Applied Sciences

ISSN(Online): 2945-3437

56

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

*Corresponding Author: Srinivas Allam
DOI- https://doi.org/10.5281/zenodo.17633906

Augie, M.A. et al. Volume- 05| Issue- 11| 2025

Research Article Received: 05-10-2025 | Accepted: 30-10-2025 | Published: 17-11-2025

Staff Upskilling With Generative AI in DevOps: Bridging the IBM i Skills Gap

Through AI-Powered Training Methodologies

Srinivas Allam

Core ITS LLC, USA

Abstract: Enterprise computing now confronts a mounting crisis: IBM i systems running mission-critical operations across

industries cannot find enough qualified professionals. Experienced practitioners retire, while too few new developers enter this

specialized field. Traditional training methods—classroom sessions, external consultants, mentorship arrangements—lack the

scalability needed and cost too much, while simultaneously missing the mark on addressing how difficult legacy platforms are to

master. Generative artificial intelligence offers a breakthrough via AI-powered code assistants and documentation generators

delivering adaptive, situation-aware guidance that bridges legacy architectures with contemporary development approaches. These

technologies create customized learning paths, instantaneous feedback channels, and automatic conversion of ancient codebases into

understandable teaching resources, cutting down skill-building time while retaining organizational wisdom. Rollout tactics stressing

gradual phases, frictionless workflow meshing, and quality-control structures guarantee precision and company-wide coordination.

Businesses document major productivity jumps, faster onboarding, better code output, and stronger developer readiness to work with

strange technologies. Yet ongoing obstacles—data privacy worries, cultural pushback, AI hallucination dangers—require measured

tactics blending technological strength with human judgment. This revolution in technical teaching helps companies keep legacy

systems running while building the talented workforce needed for continuous modernization work.

Keywords: Generative Artificial Intelligence, IBM i Skills Development, Legacy System Modernization, AI-Powered Code

Assistants, DevOps Upskilling.

INTRODUCTION
Enterprise computing's current landscape hits a

turning point as companies juggle two tough jobs:

keeping legacy IBM i systems operational while

pushing infrastructure modernization forward.

Developer and operator skills shortages affecting

IBM i have hit record levels, with seasoned

professionals leaving faster than fresh talent

arrives. Industry-wide analysis tracking

modernization paths across enterprise platforms

shows the IBM i world facing a demographic

squeeze: most skilled workers belong to age

groups nearing retirement, draining knowledge at

an alarming speed and endangering smooth

operations for business-critical systems (Woodie,

A. 2023). Conventional gap-filling tactics—hiring

outside consultants or replacing entire teams—cost

too much money and disrupt operations severely.

Scarce IBM i talent in today's job market forces

compensation packages upward beyond what

smaller and medium businesses can afford, while

lengthy hiring cycles needed to find, vet, and train

suitable candidates expose operations to risk

during changeovers. Companies note that IBM i

expertise's specialized character, coupled with

sparse university programs teaching these skills to

graduates, stretches hiring timelines between six

and twelve months for senior roles, causing vital

system improvements and maintenance work to

stall (Woodie, A. 2023).

Given this situation, generative artificial

intelligence has surfaced as a game-changing

element in DevOps teaching, opening fresh routes

for internal skill-building that safeguards

institutional wisdom while speeding capability

growth. Recent hands-on investigation of AI

integration in teaching settings shows generative

AI tools producing major learning outcome boosts

via personalized adaptation and instant feedback

systems. Detailed examination of AI-powered

teaching interventions shows these platforms

lifting student participation measures by multiples

between 1.3 and 2.1 compared to starting points,

while simultaneously sharpening knowledge

capture efficiency through flexible content

delivery, adjusting live to individual learner skill

patterns (Wang, S. et al., 2024). Beyond that,

findings confirm generative AI uses in technical

teaching spaces lighten mental burden on learners

by breaking down complicated technical ideas into

stepped explanations, producing understanding

gains between twenty-five and forty percent versus

old-style static teaching materials. These number-

backed improvements show up strongest in areas

demanding command of strange syntax, building

patterns, and system-unique expressions—exactly

the obstacles facing developers moving into IBM i

spaces from current programming styles (Wang, S.

et al., 2024).

57

Allam, S. Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Bringing AI-powered code assistants and

documentation builders into the fold means more

than just adopting new technology; it signals a

complete rethinking of how knowledge moves

through enterprise IT departments. These

instruments work as smart go-betweens connecting

legacy systems with modern development styles,

converting decades of piled-up technical

complications into reachable, situation-relevant

learning moments. This article digs into the

theoretical bedrock and hands-on uses of

generative AI in staff skill-building programs,

zeroing in on IBM i settings where legacy systems

meeting modern DevOps methods create special

teaching puzzles.

Table 1: IBM i Skills Crisis and AI Training Benefits (Woodie, A. 2023; Wang, S. et al., 2024)

Dimension Traditional Challenges AI-Enabled Solutions

Workforce

Demographics

Practitioners nearing retirement with a

limited replacement pipeline

Accelerated knowledge transfer through

adaptive AI mentoring

Talent Acquisition Extended recruitment cycles for

specialized positions

Internal capability development reduces

external dependency

Learning Efficiency Static instructional materials with

moderate retention

Scaffolded explanations improve

comprehension significantly

Engagement Levels Standard curriculum with fixed delivery

pace

Personalized adaptation responding to

individual proficiency

Cognitive Load Complex concepts presented without

contextual support

Technical complexity decomposed into

accessible components

THE IBM I SKILLS CRISIS AND
TRADITIONAL TRAINING
LIMITATIONS
The IBM i platform, once called AS/400, runs vital

business operations throughout countless

industries, yet the surrounding world suffers from

sharp talent deficits. Population shifts have built a

risky situation: IBM i professionals average over

fifty years old, with organizational knowledge

sitting increasingly inside a shrinking group

heading toward retirement. Broad investigation

looking at where artificial intelligence meets

software development shows legacy system

upkeep standing as among the toughest tests facing

today's enterprises, with companies documenting

major output gaps traced to a lack of developer

know-how in older platforms and structures (Lee,

D. et al., 2024). This pattern, sometimes labeled

the "silver tsunami," endangers operational

smoothness for companies leaning on these solid

yet aging systems. Conditions have gotten dire as

veteran workers retire at speeds outpacing fresh

talent recruitment, opening knowledge holes,

damaging system upkeep, improving abilities, and

planned modernization projects. Hands-on studies

tracking developer output numbers prove that

platform-specific expertise scarcity links directly

with climbing bug rates, stretched-out

development schedules, and heightened

operational dangers, with companies missing

adequate IBM i capabilities seeing maintenance

expenses run roughly forty to sixty percent above

those keeping sufficient expertise reserves (Lee, D.

et al., 2024).

Standard training approaches show major weak

spots when put toward IBM i skill-building

projects. Classroom teaching, though thorough,

demands long time blocks clashing with

operational needs, usually eating multiple weeks of

focused training hours, pulling key personnel away

from production support duties. Outside

consultants deliver quick expertise but don't

construct lasting internal strengths, building costly

dependencies lasting throughout project spans,

with companies reporting consultant spending

regularly topping internal salary expenses on

hourly-matched terms. Mentoring programs, while

worthwhile, don't scale well and lean on senior

staff availability already maxed out by

maintenance duties, with standard mentoring

ratios—one veteran developer to one or two

trainees—falling short when companies need to

train groups of five to ten people at once.

Investigation analyzing AI-aided development

spaces confirms traditional training tactics produce

drawn-out learning slopes, with developers

needing twelve to eighteen months to reach skill

levels in strange codebases, while AI-boosted

learning methods show promise in cutting these

schedules by thirty to fifty percent through

situation-specific explanation building and

interactive code understanding backup (Lee, D. et

al., 2024). Additionally, standard documentation—

thick technical manuals and outdated reference

texts—throws up major roadblocks to solo

58

Allam, S. Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

learning, particularly for developers whose

background sits mainly in current languages and

structures, with studies pointing to static

documentation hitting knowledge sticking rates of

just forty-five to fifty-five percent versus

interactive, feedback-powered learning tactics.

IBM i systems' intricacy makes these troubles

considerably worse. The platform wraps multiple

programming styles, spanning RPG and COBOL

to built-in database handling through DB2,

alongside distinct ideas like integrated file systems

and job-centered processing models having no

straight matches in current development spaces.

Newcomers must simultaneously nail down

language syntax, platform-particular building

patterns, and decades of company customizations,

building a many-sided learning slope that

investigation proves can flood mental processing

power and badly damage knowledge pickup

efficiency (Lee, D. et al., 2024).

Table 2: Legacy System Training Limitations and AI Intervention (Lee, D. et al., 2024; Smith, J. et al., 2012)

Training Aspect Conventional Methodology Constraints AI-Augmented Enhancement

Knowledge

Retention

Documentation-based approaches with

limited persistence

Interactive feedback-driven methodologies

improving retention

Expertise Scarcity Platform-specific knowledge

concentrated in retiring cohorts

Democratized access to contextualized

guidance

Learning

Timeframes

Extended proficiency development in

unfamiliar codebases

Reduced timelines through explanation

generation

Maintenance

Productivity

Substantial gaps attributable to

insufficient expertise

Enhanced comprehension reduces

operational costs

Cognitive

Processing

Multiple simultaneous novelties

overwhelm learners

Gradual skill building on familiar

foundations

GENERATIVE AI AS A
PEDAGOGICAL FRAMEWORK FOR
TECHNICAL UPSKILLING
Generative AI completely reshapes the learning

journey by supplying flexible, situation-aware

direction answering live to individual knowledge

holes and learning paths. Unlike frozen

documentation or pre-made training materials, AI-

powered helpers jump into two-way conversations,

making concepts clearer, supplying examples, and

tweaking explanation depth to match learner

reactions. Investigation examining large language

models in teaching settings spots ten key chances

these platforms deliver, spanning customized

learning journeys fitting individual student

requirements, instant feedback machinery speeding

learning loops, and boosted accessibility features

cutting barriers for varied learner groups (Kasneci,

E. et al., 2023). This talk-based tactic mirrors

productive human mentoring while growing

endlessly across company borders. The flexible

character of generative AI platforms builds

customized learning routes fitting varied starting

knowledge amounts, learning tempos, and mental

preferences, with studies proving these

technologies can copy human tutoring actions

while keeping steadiness and availability that

human teachers cannot equal across big student

crowds (Kasneci, E. et al., 2023). Additionally, the

quickness of AI feedback machinery tackles a key

weak spot in traditional training where learners

regularly wait hours or days for teacher answers,

during which wrong ideas harden and learning

energy fades, with investigation confirming instant

feedback circles notably boost retention

percentages and skill pickup speed in technical

learning situations.

The teaching pluses of AI-powered code helpers

show up throughout multiple angles, straight

tackling the tests built into IBM i skill-building

projects. First, these platforms offer instant

feedback circles, vital for skill pickup in technical

zones where repeated practice pushes skill. When

a developer hits strange RPG syntax or wrestles

with control language commands, the AI helper

supplies live explanations fitted inside the

particular job at hand, cutting the mental drag

typically discouraging exploration and testing in

strange technical spaces. Wide-ranging hands-on

studies tracking user actions in AI-aided

programming spaces show developers displaying

measurable output gains, with number-focused

analysis pointing to time cuts of roughly twenty-

five percent on understanding jobs when AI help

stands ready (Mozannar, H. et al., 2024). Second,

generative AI shines at pattern spotting and

comparison building, helping learners connect

known ideas from current programming languages

to IBM i matches. A developer skilled in Python or

Java can get explanations built around similar

59

Allam, S. Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

structures, speeding understanding through mental

bridging using existing thought frameworks. Large

language models show special strength in creating

situation-fitting comparisons and explanations,

with investigation recording these platforms can

effectively split complicated technical ideas into

step-by-step learning chunks matching individual

mental abilities (Kasneci, E. et al., 2023).

Documentation builders running on generative AI

tackle another key angle of the skill-building test:

converting legacy codebases into graspable

learning material. These platforms examine

existing program thinking, data movements, and

system connections, producing human-readable

explanations that decode decades-old builds

through automated code examination.

Investigation tracking developer dealings with AI

coding helpers confirms these instruments notably

cut the mental weight tied to grasping strange

code, with behavior analysis showing

programmers burning substantially less time on

starting code exploration when AI-made

explanations stand ready, letting quicker

movement toward productive changes and

improvement work (Mozannar, H. et al., 2024).

This archaeological job proves priceless in settings

where original developers have left and

organizational memory has broken apart.

Table 3: Pedagogical Advantages of Generative AI in Technical Education (Kasneci, E. et al., 2023;

Mozannar, H. et al., 2024)

Educational

Function

AI Capability Learning Outcome

Personalization Adaptive pathways accommodating diverse

backgrounds

Individual needs met across large

populations

Feedback

Timeliness

Immediate responses preventing

misconception solidification

Accelerated learning cycles with

improved retention

Pattern Recognition Analogy generation mapping familiar to

unfamiliar concepts

Cognitive bridging, leveraging existing

mental models

Code

Comprehension

Contextualized explanations within specific

tasks

Reduced preliminary exploration,

enabling productive work

Accessibility Enhanced features reducing barriers for

diverse learners

Inclusive education across varied

learning preferences

IMPLEMENTATION STRATEGIES
AND ORGANIZATIONAL
APPROACHES
Organizations pursuing AI-powered upskilling

initiatives have discovered several implementation

patterns that deliver strong adoption rates and

learning outcomes without disrupting daily

operations. Top-performing deployments favor

gradual rollouts, starting with pilot programs

aimed at narrow learning goals before scaling to

organization-wide training systems. Research

examining how generative AI tools fit into

computing education highlights key

considerations, showing that carefully planned

adoption frameworks yield better learning results

than unstructured deployments (Prather, J. et al.,

2023). Early stages usually emphasize code

comprehension and debugging work, where AI

assistants guide developers through unfamiliar

codebases and help decode system behaviors.

These initial activities establish confidence and

prove value before teams tackle tougher

assignments like feature development or system

modernization. Detailed examination of generative

AI applications in programming shows educators

and professionals now viewing these tools as

game-changing resources that could revolutionize

technical skill development, with a growing

consensus that early exposure and supervised

practice create more versatile, AI-literate

professionals ready to exploit these technologies

across entire careers (Prather, J. et al., 2023).

Blending AI capabilities into standard

development workflows stands out as the defining

factor separating winning implementations from

unsuccessful ones. Instead of positioning AI

assistants as standalone training platforms

accessed during designated learning blocks,

forward-thinking organizations weave these

features straight into integrated development

environments and everyday work contexts. When

developers hit unfamiliar API calls or troubleshoot

production problems, querying the AI assistant

happens without switching contexts, preserving

mental flow while knowledge accumulates

naturally. Evidence from studies tracking

programmer interactions with AI coding assistants

confirms that frictionless workflow integration

60

Allam, S. Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

shapes adoption patterns and effectiveness

dramatically, with data showing developers engage

far more actively when AI tools demand minimal

mental effort to activate and use (Leinonen, J. et

al., 2023). This woven-in strategy turns routine

coding work into continuous learning, spreading

education throughout normal activities instead of

confining it to scheduled training sessions. Close

observation of developers working alongside

integrated AI assistants shows characteristic

interaction rhythms, with frequent switching

between solo coding efforts and AI consultations,

indicating these tools work best as immediate-

access resources backing active learning rather

than static information repositories (Leinonen, J. et

al., 2023).

Documentation generation projects demand

thoughtful boundary-setting and priority ranking to

handle organizational resources wisely and show

concrete value. Trying to document sprawling

legacy systems all at once swamps both technical

infrastructure and organizational bandwidth for

processing the flood of materials. Winning

implementations target mission-critical systems

first—those needing regular updates, showing

elevated defect counts, or underpinning vital

business operations. After AI-generated

documentation demonstrates worth on priority

systems, organizations broaden coverage

methodically, assembling extensive knowledge

bases serving present staff and incoming hires

alike. Oversight structures guarantee AI-generated

content stays accurate and matches organizational

expectations while cultivating institutional

confidence in AI-enhanced operations. Though

generative AI shows impressive capabilities,

outputs need checking by seasoned professionals

to stop errors or questionable practices from

spreading. Organizations create review workflows

where senior developers validate AI-generated

explanations and documentation before

distribution to training staff, with evidence

confirming that human supervision stays vital for

upholding quality benchmarks and situational

appropriateness in AI-assisted programming

settings (Prather, J. et al., 2023).

Table 4: Implementation Strategies for AI-Powered Upskilling (Prather, J. et al., 2023; Leinonen, J. et al.,

2023)

Implementation

Element

Strategic Approach Organizational Impact

Deployment Phasing Pilot programs targeting specific objectives

before expansion

Improved outcomes through

structured adoption

Workflow Integration Embedding within development

environments rather than separate tools

Higher engagement with minimal

cognitive overhead

Learning Distribution Transforming routine coding into

continuous education

Active learning supported by on-

demand resources

Documentation

Prioritization

Critical systems receiving initial focus

before expansion

Measurable value demonstration and

resource management

Quality Governance Senior developer validation before content

dissemination

Maintained standards and contextual

appropriateness

MEASURING OUTCOMES AND
ADDRESSING IMPLEMENTATION
CHALLENGES
Measuring how well AI-powered upskilling

initiatives perform calls for assessment systems

capturing both technical skill gains and operational

effects. Organizations monitor conventional

indicators like time-to-productivity for fresh team

members, bug rates in code changes, and task

volumes finished independently versus those

needing senior developer help. Subtler gauges

track code quality advances, compliance with

modernization guidelines, and successful handling

of progressively demanding assignments across

time. Thorough empirical investigation of AI

coding assistants shows these tools creating

measurable shifts in developer output, with

controlled trials recording that programmers using

AI support finish tasks at accelerated rates versus

baseline situations lacking AI backing (Nguyen,

N., & Nadi, S. 2022). Beyond speed gains,

granular examination of code quality figures points

to AI-assisted development yielding code with

matching or better accuracy compared to hand-

written alternatives, with certain task types

showing bug decreases, though outcomes fluctuate

considerably depending on assignment difficulty

and developer background (Nguyen, N., & Nadi,

S. 2022).

61

Allam, S. Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

Real-world organizational examples show major

gains across these areas when AI assistants blend

properly into development routines. Development

squads adding AI assistants document striking cuts

in onboarding durations, with entry-level

developers hitting self-sufficient productivity

marks much quicker than past norms. Bug

frequencies in legacy code alterations drop as

developers build a richer understanding of system

mechanics and dependencies through AI-supported

discovery. Most striking perhaps, organizations

notice heightened eagerness among developers

trained in current languages to tackle IBM i

platforms, since AI assistants lower the mental

hurdles tied to strange technologies. Evidence

examining how developers view AI coding tools

confirms practitioners regard these systems as

worthwhile productivity boosters, with polling

figures revealing substantial developer segments

reporting faster coding when employing AI

assistants, while many detect code quality gains

(Imai, S. 2022). Developers also consistently flag

stronger learning results, with sizable groups

noting AI tools accelerate their grasp of fresh

programming ideas, and numerous respondents

claiming these systems let them maintain

development concentration better by cutting down

documentation lookup interruptions (Imai, S.

2022).

Obstacles remain nonetheless and demand active

handling across technical, organizational, and

cultural fronts. Data privacy and security worries

surface when AI systems chew through proprietary

code and business logic, especially in sectors

facing strict regulatory constraints. Organizations

tackle these worries via meticulous vendor vetting,

highlighting providers offering data sovereignty

protections and transparent commitments about

training data handling. Cultural pushback

constitutes another major roadblock, with evidence

showing that although most developers view AI

assistants favorably, anxieties about code security,

licensing ramifications, and algorithmic fairness

remain widespread, with notable developer

percentages voicing unease about security angles

of AI-produced code and worries over possible

copyright or licensing tangles (Imai, S. 2022).

Technical shortcomings of present-day generative

AI systems likewise deserve recognition and

deliberate countermeasures. These tools sometimes

generate convincing yet wrong explanations, a

pattern dubbed "hallucination," creating special

dangers in teaching situations where learners

might miss spotting mistakes. Factual examination

shows AI-created code recommendations carry

flaws or accuracy problems in a substantial share

of instances spanning varied programming jobs,

requiring thorough human checking and approval

(Nguyen, N., & Nadi, S. 2022). Smart

implementations train users to treat AI outputs

skeptically, promoting cross-checking against

documentation, test setups, and senior developer

oversight, building constructive doubt that

strengthens learning gains.

CONCLUSION
Folding generative artificial intelligence into IBM

i upskilling programs marks a profound shift in

how businesses tackle the crossroads of legacy

system upkeep and workforce cultivation hurdles.

The demographic squeeze hitting the IBM i world,

marked by vanishing expertise and thin talent

streams, calls for breakthrough answers moving

past what traditional training methods can deliver.

AI-driven code assistants and documentation

builders have shown they can span this divide

through flexible learning structures that tailor

instruction, deliver instant contextual feedback,

and convert intricate legacy codebases into

digestible teaching materials. Businesses rolling

out these technologies clock tangible gains on

multiple fronts: shortened onboarding stretches,

boosted developer output, elevated code quality,

and a stronger appetite for tackling unfamiliar

platforms.

Success with these programs hinges squarely on

smart rollout tactics stressing gradual deployment,

smooth workflow meshing, and solid oversight

machinery guaranteeing precision and

organizational harmony. Though hurdles linger—

spanning data security anxieties, cultural pushback

from veteran practitioners, and technical

constraints like AI hallucination—hands-on

management tactics and level-headed viewpoints

blending AI strengths with human judgment let

organizations tap these technologies productively.

The track record built from early movers confirms

that in-house upskilling powered by generative AI

offers a workable and lasting substitute for pricey

outside consulting or disruptive staff turnover

schemes.

As AI technologies keep evolving and

organizational habits ripen, the ability to sustain

legacy systems while pushing modernization

forward will lean increasingly on how well

enterprises wield these tools for growing technical

capabilities. The shift reaches past immediate skill

shortages to wider questions about safeguarding

62

Allam, S. Sarc. Jr. Appl. Sci. vol-5, issue-11 (2025) pp-56-62

Copyright © 2022 The Author(s): This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0
(CC BY-NC-ND 4.0) International License

Publisher: SARC Publisher

and passing along knowledge during times of

breakneck technological change, with takeaways

from IBM i upskilling ventures shaping

workforce-building tactics across varied legacy

platforms and niche technical fields for the long

haul.

REFERENCES
1. Woodie, A. "Kyndryl Inspects The

Modernization Plans Of IBM i And

Mainframe Shops." IT Jungle, Nov. (2023).

2. Wang, S., Wang, F., Zhu, Z., Wang, J., Tran,

T., & Du, Z. "Artificial intelligence in

education: A systematic literature

review." Expert Systems with Applications 252

(2024): 124167.

3. Lee, D., Arnold, M., Srivastava, A., Plastow,

K., Strelan, P., Ploeckl, F., ... & Palmer, E.

"The impact of generative AI on higher

education learning and teaching: A study of

educators’ perspectives." Computers and

Education: Artificial Intelligence 6 (2024):

100221.

4. Smith, J., Black, L., & Williams, L.

"Emergency exercise participation and

evaluation." The Journal of Extension 50.3

(2012): 46.

5. Kasneci, E., Seßler, K., Küchemann, S.,

Bannert, M., Dementieva, D., Fischer, F., ... &

Kasneci, G. "ChatGPT for good? On

opportunities and challenges of large language

models for education." Learning and

individual differences 103 (2023): 102274.

6. Mozannar, H., Bansal, G., Fourney, A., &

Horvitz, E. "Reading between the lines:

Modeling user behavior and costs in AI-

assisted programming." Proceedings of the

2024 CHI Conference on Human Factors in

Computing Systems. (2024).

7. Prather, J., Denny, P., Leinonen, J., Becker, B.

A., Albluwi, I., Craig, M., ... & Savelka, J.

"The robots are here: Navigating the

generative ai revolution in computing

education." Proceedings of the 2023 working

group reports on innovation and technology in

computer science education. 2023. 108-159.

8. Leinonen, J., Hellas, A., Sarsa, S., Reeves, B.,

Denny, P., Prather, J., & Becker, B. A. "Using

large language models to enhance

programming error messages." Proceedings of

the 54th ACM Technical Symposium on

Computer Science Education V. 1. (2023).

9. Nguyen, N., & Nadi, S. "An empirical

evaluation of GitHub copilot's code

suggestions." Proceedings of the 19th

International Conference on Mining Software

Repositories. 2022.

10. Imai, S. "Is github copilot a substitute for

human pair-programming? an empirical

study." Proceedings of the ACM/IEEE 44th

International Conference on Software

Engineering: Companion Proceedings. (2022).

Source of support: Nil; Conflict of interest: Nil.
Cite this article as:

Allam, S. " Staff Upskilling With Generative AI in DevOps: Bridging the IBM i Skills Gap Through AI-Powered

Training Methodologies." Sarcouncil Journal of Applied Sciences 5.11 (2025): pp 56-62.

